半導體材料的定義
半導體材料(semiconductor material)是一類具有半導體性能(導電能力介于導體與絕緣體之間,電阻率約在1mΩ·cm~1GΩ·cm范圍內)、可用來制作半導體器件和集成電路的電子材料。......閱讀全文
半導體材料的定義
半導體材料(semiconductor material)是一類具有半導體性能(導電能力介于導體與絕緣體之間,電阻率約在1mΩ·cm~1GΩ·cm范圍內)、可用來制作半導體器件和集成電路的電子材料。
低維半導體材料的定義
實際上這里說的低維半導體材料就是納米材料,之所以不愿意使用這個詞,主要是不想與現在熱炒的所謂的納米襯衣、納米啤酒瓶、納米洗衣機等混為一談!從本質上看,發展納米科學技術的重要目的之一,就是人們能在原子、分子或者納米的尺度水平上來控制和制造功能強大、性能優越的納米電子、光電子器件和電路,納米生物傳感器件
化合物半導體材料的定義
化合物半導體材料是由兩種或兩種以上元素以確定的原子配比形成的化合物,并具有確定的禁帶寬度和能帶結構等半導體性質的稱為化合物半導體材料。
磁性半導體的定義
磁性半導體(英語:Magnetic semiconductor)是一種同時體現鐵磁性(或者類似的效應)和半導體特性的半導體材料。
無雜質半導體的定義
無雜質半導體(intrinsic semiconductor,亦稱作i型半導體)是指未摻入雜質的半導體。半導體制作過程中的一個重要步驟就是摻入雜質(doping)。
含雜質半導體的定義
相對于無雜質半導體,含有雜質的半導體叫做含雜質半導體(extrinsic semiconductor)。
非晶半導體的定義
非晶半導體又稱無定形半導體或玻璃半導體,非晶態固體中具有半導電性的一類材料。具有亞穩態結構,組成原子的排列是短程有序、長程無序,鍵合力未發生變化,只是鍵長和鍵角略有不同。按鍵合力性質有共價鍵半導體,包括四面體的Si、Ge、SiC、ZnSn、GaAs、GaSb等,“鏈狀”的S、Se、Te、As2Se3
什么是半導體材料?常見半導體材料有哪些?
半導體材料是什么?半導體材料(semiconductor material)是一類具有半導體性能(導電能力介于導體與絕緣體之間,電阻率約在1mΩ·cm~1GΩ·cm范圍內)、可用來制作半導體器件和集成電路的電子材料。自然界的物質、材料按導電能力大小可分為導體、半導體和絕緣體三大類。半導體的電阻率在1
半導體材料的概念
半導體材料(semiconductor material)是一類具有半導體性能(導電能力介于導體與絕緣體之間,電阻率約在1mΩ·cm~1GΩ·cm范圍內)、可用來制作半導體器件和集成電路的電子材料。
半導體材料的特性
半導體材料的特性:半導體材料是室溫下導電性介于導電材料和絕緣材料之間的一類功能材料。靠電子和空穴兩種載流子實現導電,室溫時電阻率一般在10-5~107歐·米之間。通常電阻率隨溫度升高而增大;若摻入活性雜質或用光、射線輻照,可使其電阻率有幾個數量級的變化。此外,半導體材料的導電性對外界條件(如熱、光、
負極材料的定義
負極指電源中電位(電勢)較低的一端。在原電池中,是指起氧化作用的電極,電池反應中寫在左邊。從物理角度來看,是電路中電子流出的一極。而負極材料,則是指電池中構成負極的原料,目前常見的負極材料有碳負極材料、錫基負極材料、含鋰過渡金屬氮化物負極材料、合金類負極材料和納米級負極材料。
常見的半導體材料介紹
常見的半導體材料有硅、鍺、砷化鎵等,硅是各種半導體材料應用中最具有影響力的一種。
半導體材料的基本特性
自然界的物質、材料按導電能力大小可分為導體、半導體和絕緣體三大類。半導體的電阻率在1mΩ·cm~1GΩ·cm范圍(上限按謝嘉奎《電子線路》取值,還有取其1/10或10倍的;因角標不可用,暫用當前描述)。在一般情況下,半導體電導率隨溫度的升高而降低。
半導體材料的應用介紹
制備不同的半導體器件對半導體材料有不同的形態要求,包括單晶的切片、磨片、拋光片、薄膜等。半導體材料的不同形態要求對應不同的加工工藝。常用的半導體材料制備工藝有提純、單晶的制備和薄膜外延生長。所有的半導體材料都需要對原料進行提純,要求的純度在6個“9”以上,最高達11個“9”以上。提純的方法分兩大類,
常用的半導體材料介紹
常用的半導體材料分為元素半導體和化合物半導體。元素半導體是由單一元素制成的半導體材料。主要有硅、鍺、硒等,以硅、鍺應用最廣。化合物半導體分為二元系、三元系、多元系和有機化合物半導體。二元系化合物半導體有Ⅲ-Ⅴ族(如砷化鎵、磷化鎵、磷化銦等)、Ⅱ-Ⅵ族(如硫化鎘、硒化鎘、碲化鋅、硫化鋅等)、 Ⅳ-Ⅵ族
半導體材料的早期應用
半導體的第一個應用就是利用它的整流效應作為檢波器,就是點接觸二極管(也俗稱貓胡子檢波器,即將一個金屬探針接觸在一塊半導體上以檢測電磁波)。除了檢波器之外,在早期,半導體還用來做整流器、光伏電池、紅外探測器等,半導體的四個效應都用到了。從1907年到1927年,美國的物理學家研制成功晶體整流器、硒整流
半導體材料的基本特性
自然界的物質、材料按導電能力大小可分為導體、半導體和絕緣體三大類。半導體的電阻率在1mΩ·cm~1GΩ·cm范圍(上限按謝嘉奎《電子線路》取值,還有取其1/10或10倍的;因角標不可用,暫用當前描述)。在一般情況下,半導體電導率隨溫度的升高而降低。
半導體材料的早期應用
半導體的第一個應用就是利用它的整流效應作為檢波器,就是點接觸二極管(也俗稱貓胡子檢波器,即將一個金屬探針接觸在一塊半導體上以檢測電磁波)。除了檢波器之外,在早期,半導體還用來做整流器、光伏電池、紅外探測器等,半導體的四個效應都用到了。從1907年到1927年,美國的物理學家研制成功晶體整流器、硒整流
半導體材料的特性參數
半導體材料雖然種類繁多但有一些固有的特性,稱為半導體材料的特性參數。這些特性參數不僅能反映半導體材料與其他非半導體材料之間的差別,而且更重要的是能反映各種半導體材料之間甚至同一種材料在不同情況下特性上的量的差別。常用的半導體材料的特性參數有:禁帶寬度、電阻率、載流子遷移率(載流子即半導體中參加導電的
半導體材料的制備方法
不同的半導體器件對半導體材料有不同的形態要求,包括單晶的切片、磨片、拋光片、薄膜等。半導體材料的不同形態要求對應不同的加工工藝。常用的半導體材料制備工藝有提純、單晶的制備和薄膜外延生長。所有的半導體材料都需要對原料進行提純,要求的純度在6個“9”以上 ,最高達11個“9”以上。提純的方法分兩大類,一
半導體材料的提純方法
提純方法可分化學法和物理法。化學提純是把材料制成某種中間化合物以便系統地除去某些雜質,最后再把材料(元素)從某種容易分解的化合物中分離出來。物理提純常用的是區域熔煉技術,即將半導體材料鑄成錠條,從錠條的一端開始形成一定長度的熔化區域。利用雜質在凝固過程中的分凝現象,當此熔區從一端至另一端重復移動多次
半導體材料的提純方法
半導體材料的提純“主要是除去材料中的雜質。提純方法可分化學法和物理法。化學提純是把材料制成某種中間化合物以便系統地除去某些雜質,最后再把材料(元素)從某種容易分解的化合物中分離出來。物理提純常用的是區域熔煉技術,即將半導體材料鑄成錠條,從錠條的一端開始形成一定長度的熔化區域。利用雜質在凝固過程中的分
常見的半導體材料特點
常見的半導體材料有硅(si)、鍺(ge),化合物半導體,如砷化鎵(gaas)等;摻雜或制成其它化合物半導體材料,如硼(b)、磷(p)、錮(in)和銻(sb)等。其中硅是最常用的一種半導體材料。有以下共同特點:1.半導體的導電能力介于導體與絕緣體之間2.半導體受外界光和熱的刺激時,其導電能力將會有顯著
化合物半導體材料的材料優勢
化合物半導體集成電路的主要特征是超高速、低功耗、多功能、抗輻射。以GaAs為例,通過比較可得:1.化合物半導體材料具有很高的電子遷移率和電子漂移速度,因此,可以做到更高的工作頻率和更快的工作速度。2.肖特基勢壘特性優越,容易實現良好的柵控特性的MES結構。3.本征電阻率高,為半絕緣襯底。電路工藝中便
什么是半導體材料?
半導體材料(semiconductormaterial)是導電能力介于導體與絕緣體之間的物質。半導體材料是一類具有半導體性能、可用來制作半導體器件和集成電的電子材料,其電導率在10(U-3)~10(U-9)歐姆/厘米范圍內。
半導體熱電材料
? 半導體熱電材料(英文名:semiconductor thermoelectric material)指具有較大熱電效應的半導體材料,亦稱溫差電材料。它能直接把熱能轉換成電能,或直接由電能產生致冷作用。? ? 1821年,德國塞貝克(see—beck)在金屬中發現溫差電效應,僅在測量溫度的溫差電偶
2025深圳半導體展會|半導體材料展會|半導體設備展會|
「官網」2025深圳13屆國際半導體技術展「半導體展會」展會時間:2025年4月9日-11日論壇時間:2025年4月9日-11日舉辦地點:深圳福田會展中心 (深圳市福田中心區福華三路)展會規模:?面積10萬平米,展商1800余家,展位3600多個,觀眾近10萬人次展會報名:136 (李先生)中間四位
半導體展會2024半導體展|半導體設備展|2024半導體材料展
深圳電子元器件展,電子儀器儀表展,深圳電子儀器儀表展,電子元器件展,深圳電子設備展,電子設備展,電子元器件展覽會,電子儀器展,深圳電子儀器展,電儀器展覽會,深圳繼電器展,深圳電容器展,深圳連接器展,深圳集成電路展2024中國(深圳)國際半導體與封裝設備展覽會2024 China (Shenzhen)
半導體材料的發展現狀
相對于半導體設備市場,半導體材料市場長期處于配角的位置,但隨著芯片出貨量增長,材料市場將保持持續增長,并開始擺脫浮華的設備市場所帶來的陰影。按銷售收入計算,日本保持最大半導體材料市場的地位。然而臺灣、ROW、韓國也開始崛起成為重要的市場,材料市場的崛起體現了器件制造業在這些地區的發展。晶圓制造材料市
寬帶隙半導體材料的特性
氮化鎵、碳化硅和氧化鋅等都是寬帶隙半導體材料,因為它的禁帶寬度都在3個電子伏以上,在室溫下不可能將價帶電子激發到導帶。器件的工作溫度可以很高,比如說碳化硅可以工作到600攝氏度;金剛石如果做成半導體,溫度可以更高,器件可用在石油鉆探頭上收集相關需要的信息。它們還在航空、航天等惡劣環境中有重要應用。廣