<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • Antpedia LOGO WIKI資訊

    無雜質半導體的定義

    無雜質半導體(intrinsic semiconductor,亦稱作i型半導體)是指未摻入雜質的半導體。半導體制作過程中的一個重要步驟就是摻入雜質(doping)。......閱讀全文

    無雜質半導體的定義

    無雜質半導體(intrinsic semiconductor,亦稱作i型半導體)是指未摻入雜質的半導體。半導體制作過程中的一個重要步驟就是摻入雜質(doping)。

    半導體材料的定義

    半導體材料(semiconductor material)是一類具有半導體性能(導電能力介于導體與絕緣體之間,電阻率約在1mΩ·cm~1GΩ·cm范圍內)、可用來制作半導體器件和集成電路的電子材料。

    磁性半導體的定義

    磁性半導體(英語:Magnetic semiconductor)是一種同時體現鐵磁性(或者類似的效應)和半導體特性的半導體材料。

    含雜質半導體的定義

    相對于無雜質半導體,含有雜質的半導體叫做含雜質半導體(extrinsic semiconductor)。

    非晶半導體的定義

    非晶半導體又稱無定形半導體或玻璃半導體,非晶態固體中具有半導電性的一類材料。具有亞穩態結構,組成原子的排列是短程有序、長程無序,鍵合力未發生變化,只是鍵長和鍵角略有不同。按鍵合力性質有共價鍵半導體,包括四面體的Si、Ge、SiC、ZnSn、GaAs、GaSb等,“鏈狀”的S、Se、Te、As2Se3

    低維半導體材料的定義

    實際上這里說的低維半導體材料就是納米材料,之所以不愿意使用這個詞,主要是不想與現在熱炒的所謂的納米襯衣、納米啤酒瓶、納米洗衣機等混為一談!從本質上看,發展納米科學技術的重要目的之一,就是人們能在原子、分子或者納米的尺度水平上來控制和制造功能強大、性能優越的納米電子、光電子器件和電路,納米生物傳感器件

    化合物半導體材料的定義

    化合物半導體材料是由兩種或兩種以上元素以確定的原子配比形成的化合物,并具有確定的禁帶寬度和能帶結構等半導體性質的稱為化合物半導體材料。

    氧化物半導體的定義和應用

    氧化物半導體(oxide semiconductor)具有半導體特性的一類氧化物。氧化物半導體的電學性質與環境氣氛有關。氧化物半導體ZnO、CdO、SnO2等常用于制造氣敏元件,Fe2O3、Cr2O3、Al2O3等常用于制造濕敏元件;SnO2膜用于制做透明電極等。

    半導體的特性

    半導體的導電性能比導體差而比絕緣體強。實際上,半導體與導體、絕緣體的區別在不僅在于導電能力的不同,更重要的是半導體具有獨特的性能(特性)。?1. 在純凈的半導體中適當地摻入一定種類的極微量的雜質,半導體的導電性能就會成百萬倍的增加—-這是半導體zui顯著、zui突出的特性。例如,晶體管就是利用這種特

    元素半導體的概念

    元素半導體指以單一元素組成的半導體,屬于這一材料的有硼、鍺、硅、灰錫、銻、硒、碲等,其中以鍺、硅、錫研究較早,制備工藝相對成熟。

    元素半導體的結構

    具有半導體特性的元素,如硅、鍺、硼、硒、碲、碳、碘等組成的材料。其導電能力介乎導體和絕緣體之間。主要采用直拉法、區熔法或外延法制備。工業上應用最多的是硅、鍺、硒。用于制作各種晶體管、整流器、集成電路、太陽能電池等方面。其他硼、碳(金剛石、石墨)、碲、碘及紅磷、灰砷、灰銻、灰鉛、硫也是半導體,但都尚未

    半導體的應用介紹

    半導體在集成電路、消費電子、通信系統、光伏發電、照明、大功率電源轉換等領域都有應用,如二極管就是采用半導體制作的器件。

    半導體材料的概念

    半導體材料(semiconductor material)是一類具有半導體性能(導電能力介于導體與絕緣體之間,電阻率約在1mΩ·cm~1GΩ·cm范圍內)、可用來制作半導體器件和集成電路的電子材料。

    電子/半導體的概述

      定義:電阻率介于金屬和絕緣體之間并有負的電阻溫度系數的物質稱為半導體:  簡介:室溫時電阻率約在1mΩ·cm~1GΩ·cm之間(上限按謝嘉奎《電子線路》取值,還有取其1/10或10倍的;因上角標暫不可用,暫用當前方法描述),溫度升高時電阻率則減小。半導體材料很多,按化學成分可分為元素半導體和化合

    磁性半導體的分類

    磁性半導體研究熱點為主要為兩類半導體:稀磁半導體、鐵磁半導體。

    半導體的發現歷史

    半導體的發現實際上可以追溯到很久以前。1833年,英國科學家電子學之父法拉第最先發現硫化銀的電阻隨著溫度的變化情況不同于一般金屬,一般情況下,金屬的電阻隨溫度升高而增加,但法拉第發現硫化銀材料的電阻是隨著溫度的上升而降低。這是半導體現象的首次發現。?不久,1839年法國的貝克萊爾發現半導體和電解質接

    半導體的應用介紹

    半導體在集成電路、消費電子、通信系統、光伏發電、照明、大功率電源轉換等領域都有應用,如二極管就是采用半導體制作的器件。

    半導體變流器

      導體變流器是使用半導體閥器件的一種電力電子變流器,使電源系統的電壓、頻率、相數和其他電量或特性發生變化的電器設備。  定義  使用半導體閥器件的一種電力電子變流器。  術語   ①類似術語也適用于由具體類型的半導體或其他電子閥件組成的變流器或具體類型的變流器。例如晶閘管變流器,汞弧整流器,晶體管

    什么是半導體材料?常見半導體材料有哪些?

    半導體材料是什么?半導體材料(semiconductor material)是一類具有半導體性能(導電能力介于導體與絕緣體之間,電阻率約在1mΩ·cm~1GΩ·cm范圍內)、可用來制作半導體器件和集成電路的電子材料。自然界的物質、材料按導電能力大小可分為導體、半導體和絕緣體三大類。半導體的電阻率在1

    半導體所揭示半導體界面電荷轉移機理

      與傳統的太陽能電池相比,染料敏化太陽能電池具有原材料豐富、生產過程中無毒無污染、生產成本較低、結構簡單、易于制造、生產工藝簡單、易于大規模工業化生產等優勢,在清潔能源領域具有重要的應用價值。在過去二十多年里,染料敏化太陽能電池吸引了世界各國眾多科學家的研究,在染料、電極、電解質等各方面取得了很大

    半導體激光器在半導體激光打標機中的應用

    半導體激光器在半導體激光打標機中的應用:半導體激光器因其使用壽命長、激光利用效率高、熱能量比YAG激光器小、體積小、性價比高、用電省等一系列優勢而成為2010年熱賣產品,e網激光生產的國產半導體激光器的出現,加速了以半導體激光器為主要耗材的半導體激光機取代YAG激光打標機市場份額的步伐。

    半導體所等關于磁性半導體(Ga,Mn)As的研究獲得進展

      最近,《納米快報》雜志報道了中科院半導體研究所超晶格室趙建華研究員和博士生陳林將磁性半導體(Ga,Mn)As居里溫度提高到200K的研究成果,此項工作是與楊富華研究組以及美國佛羅里達州立大學Stephan von Molnár教授和熊鵬教授研究組合作完成的。   (Ga,Mn)A

    影響半導體導電的因素

    主要是摻入的雜質種類和數量、以及工作溫度,從而影響到載流子濃度和遷移率,結果使得半導體的電導率發生變化。

    半導體的光電導簡介

      半導體的光電導(photo conductivity of semiconductor)是指光照射半導體使電導增大的現象。本征半導體的電導能力(電導率)很小,經光照射后半導體內部產生光生載流子(電子或空穴),使其導電能力加大。光照射前后半導體電導的改變與光的波長、強度以及半導體中雜質缺陷態的能級

    半導體材料的基本特性

    自然界的物質、材料按導電能力大小可分為導體、半導體和絕緣體三大類。半導體的電阻率在1mΩ·cm~1GΩ·cm范圍(上限按謝嘉奎《電子線路》取值,還有取其1/10或10倍的;因角標不可用,暫用當前描述)。在一般情況下,半導體電導率隨溫度的升高而降低。

    半導體ATE設備的作用

      在元器件的工藝流程中,根據工藝的需要,存在著各種需要測試的環節。目的是為了篩選殘次品,防止進入下一道的工序,減少下一道工序中的冗余的制造費用。這些環節需要通過各種物理參數來把握,這些參數可以是現實物理世界中的光,電,波,力學等各種參量,但是,目前大多數常見的是電子信號的居多。ATE設計工程師們要

    稀磁性半導體的應用

    稀磁性半導體是指非磁性半導體中的部分原子被過渡金屬元素取代后形成的磁性半導體,因兼具有半導體和磁性的性質,即在一種材料中同時應用電子電荷和自旋兩種自由度,因而引起廣泛關注,尚處于研究階段。

    半導體材料的基本特性

    自然界的物質、材料按導電能力大小可分為導體、半導體和絕緣體三大類。半導體的電阻率在1mΩ·cm~1GΩ·cm范圍(上限按謝嘉奎《電子線路》取值,還有取其1/10或10倍的;因角標不可用,暫用當前描述)。在一般情況下,半導體電導率隨溫度的升高而降低。

    半導體材料的應用介紹

    制備不同的半導體器件對半導體材料有不同的形態要求,包括單晶的切片、磨片、拋光片、薄膜等。半導體材料的不同形態要求對應不同的加工工藝。常用的半導體材料制備工藝有提純、單晶的制備和薄膜外延生長。所有的半導體材料都需要對原料進行提純,要求的純度在6個“9”以上,最高達11個“9”以上。提純的方法分兩大類,

    半導體的分類及性能

    (1)元素半導體。元素半導體是指單一元素構成的半導體,其中對硅、硒的研究比較早。它是由相同元素組成的具有半導體特性的固體材料,容易受到微量雜質和外界條件的影響而發生變化。目前, 只有硅、鍺性能好,運用的比較廣,硒在電子照明和光電領域中應用。硅在半導體工業中運用的多,這主要受到二氧化硅的影響,能夠在器

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频