氮摻雜納米碳材料研究已經成為國際碳材料領域的熱點之一,這主要是因為氮原子比碳原子多一個價電子,氮摻雜進入石墨的六元環結構后可形成吡啶、吡咯、石墨氮、吡啶氧化物等含氮官能團,不僅可以提高納米碳材料的表面化學活性,還可對其電子結構進行調節。在眾多納米碳材料中,空心碳球具有低密度、高比表面積、可填充空腔等結構特性,在藥物傳輸、納米反應器、鋰電、活性酶固載等領域具有廣闊的應用前景。空心碳球一般采用化學氣相沉積法、電弧放電法、水熱法、模板法制備,主要存在尺寸控制難、球殼厚度大、表面粗糙、石墨化程度低等缺點。 中科院寧波材料技術與工程研究所所屬新能源技術所張建研究員課題組與河北科技大學化學與藥物工程學院合作開展了系統的研究工作,提出了模板法離子液石墨化制備摻氮納米碳球的新方法,即采用含氮的離子液體作為碳源和氮源,在單分散的氧化硅小球模板上組裝成納米薄層,經高溫石墨化處理后除去氧化硅模板(圖1)。制備得到空心碳球具有尺寸可控(直徑最......閱讀全文
電催化CO2還原反應(CO2 RR)不僅有望降低大氣層中的CO2含量,緩解溫室效應,還能將CO2轉化為燃料,減少化石能源消耗,促進碳循環的進行。然而,以水溶液作電解質時,電催化CO2RR往往伴隨有劇烈的析氫反應(HER)。HER作為CO2 RR最主要的副反應,嚴重制約了CO2 RR的活性和選擇性
近日,北京大學工學院鄒如強教授課題組在制備硼氮共摻雜碳納米管材料方面取得新進展。他們成功制備了一種新型硼氮共摻雜碳納米管包覆的納米芽狀方硒鈷礦型CoSe2納米材料,并對其儲鈉機制進行了詳細研究,該材料作為鈉離子電池負極材料展現出高容量和高倍率的性能。相應成果以“Encapsulating Tro
由中國科學院大連化學物理研究所團隊合作制備出同時具有高比表面積和高含氮量的導電共軛微孔高分子。 超級電容器作為一種新型環保儲能器件已被廣泛應用于混合動力電動車。由于其通過雙電層機理在電極上存儲大量電荷,所以尋找具有高比表面積、高導電的電極材料(通常是多孔碳材料),成為提高器件容量的關鍵。研究人
近期,中國科學院合肥物質科學研究院固體物理研究所環境與能源納米材料中心在生物質衍生碳基電化學催化劑方面取得一系列進展。該系列研究為以廉價、資源豐富的生物質資源作為原材料制備高性能碳基電化學催化劑開拓了新的思路,具有重要的實際應用意義。相關研究成果相繼發表在Phys. Chem. Chem. Ph
混合電容器技術將二次電池和超級電容器進行“內部交叉”,兼具高能量密度、高功率密度及長壽命等特性。目前,鋰離子混合電容器已實現商業化應用。但鋰資源不足和分布不均會限制鋰基儲能器件大規模應用及可持續發展。鈉鉀資源豐富、分布廣泛、價格低廉,與鋰的物理化學特性相似,使得鈉鉀離子儲能器件有望成為鋰基儲能體
中科院青島生物能源與過程研究所新型能源碳素材料團隊研發了一種氮摻雜的石墨炔材料,用作氧還原反應,表現出優異的催化性能,相關工作近日發表于《應用材料與界面》。 石墨炔是一種新型碳材料,由炔鍵和苯環連接而成,具有特殊的sp雜化(一種較常見的雜化方式)碳原子,已被報道在光催化、電催化以及生物方面均表
硫作為正極材料,具有較高的理論比容量(比現有商用正極材料的容量高出一個數量級),同時還具有成本低廉、儲量豐富和環境友好等優點,因而鋰硫電池被認為是電化學儲能中最有前景的新一代電池之一。但是鋰硫電池在走向實際應用過程中,仍有許多問題亟待解決,如硫和放電產物硫化鋰的低電導率、在充放電過程中形成的可溶
碳納米管具有比表面積高、尖端曲率半徑小、化學穩定性高、場發射時閾值電壓低、電流密度大以及可控時間長等特性,使其成為電子發射的理想材料。然而對于碳納米管的商業化應用,發射點的密度和均勻性仍是一個主要的問題,因此尋找能夠提高和改善碳納米管場發射性能的方法是十分重要和必要的。在本論文中,我們利用商用軟件M
隨著電子元器件及消費類電子產品向著小型化、智能化和可穿戴方向發展,要求基于高密度電子封裝的微納器件須具備柔性及可延展化等特點,以促進人與信息的高效交換,這對構成器件的導電基元材料提出了更加嚴苛的挑戰。除了滿足基本的電氣互聯外,導電基元材料還需具備優異的力學強度、壓阻特性以及循環穩定性等特點。因此
近日,中國科學技術大學教授朱彥武課題組利用富勒烯作為前驅體開發設計了一種具有優異儲能性能的摻氮多孔碳。該研究成果發表在12月19日出版的《先進材料》(Advanced Materials)上(DOI:10.1002/adma.201603414)。 由于其高比表面積和大量的反應活性位點,摻氮多
摻雜納米碳材料已經成為國際碳材料及催化領域的研究熱點之一。完整的石墨結構呈現化學惰性,通過化學方法向表面或體相引入氮、硼、磷等雜原子后,可以大幅提升納米碳材料的表面化學活性。近年來,作為一種可替代金屬催化劑的新穎材料,摻雜納米碳已在低碳烷烴轉化、選擇氧化、電催化氧還原(ORR)、酸/堿催化等多類
雜原子摻雜碳材料,由于其大比表面積、高孔隙、良好的電子傳導性以及熱、機械穩定性等特點,已被廣泛應用于催化、能源、生命科學等領域。傳統的制備方法往往都以不可再生碳源作為原料,制備過程一般要加入昂貴的模板、活化劑及雜原子源等。近年來,隨著能源危機的日益凸顯,以自然界中廉價易得、可再生的生物質為原料制
燃料電池因具有高效和環境友好等優點,被認為是21世紀的重要動力來源。燃料電池陰極氧還原反應是總體性能提升的限制因素,催化氧還原反應中使用最多的是貴金屬鉑基催化劑,但面臨著高成本和低穩定性等問題。因此,研制新型的具有高催化性能的非貴金屬催化劑顯得尤為重要。近日,內蒙古大學的張軍教授課題組采用一種普
近期,中國科學院合肥物質科學研究院固體物理研究所環境與能源納米材料中心在選擇性加氫催化轉化方面取得新進展,構筑了具有超高催化活性、選擇性以及穩定性的包含Co-Nx活性位點的非貴金屬催化劑。相關研究成果發表在國際期刊《先進材料》上(Adv.Mater. 2019, DOI: 10.1002/adm
近日,中國科學院深圳先進技術研究院集成所功能薄膜材料研究中心研究員唐永炳及其團隊聯合湖南大學教授馬建民研發出基于氮硫共摻雜空心納米帶的鈉離子電容器,并獲得高容量和長循環壽命。在5A/g的高電流密度下循環10000次后,容量保持率接近100%。相關研究成果以Hollow Carbon Nanobe
以納米碳管、納米金剛石、石墨烯為代表的納米碳材料在催化中具有廣泛的應用前景,不僅可以作為高性能載體負載金屬及氧化物活性組分,還可直接作為非金屬催化劑用于氧化脫氫、選擇氧化、電催化等反應。相對于傳統的金屬催化體系而言,碳基催化劑具有表面與結構可控、碳資源充足、耐酸堿腐蝕等獨特優勢。通過化學方法將氮
▲大面積石墨炔薄膜▲宏量制備高純度石墨炔▲二維碳石墨炔的結構模型 石墨炔是一種新的碳同素異形體,其豐富的碳化學鍵,大的共軛體系、寬面間距、優良的化學穩定性和半導體性能一直吸引著科學家的關注。隨著富勒烯、碳管及石墨烯等碳材料陸續通過物理方法成功制備,如何制備石墨炔一直是科學研究的焦點。
1. JACS:用于檢測癌細胞和腫瘤中溶酶體甲醛含量的雙“鎖鑰”釕復合探針 生物醫學研究表明,過量的甲醛生成是造成組織癌變、癌癥進展和轉移的關鍵因素之一。響應性分子探針可以檢測活細胞和腫瘤中溶酶體內的甲醛,并對藥物引發的甲醛清除過程進行監測,這也有助于未來的癌癥診斷和治療監測。 大連理工大學
使用廉價高效的催化劑對CO2進行資源能源化轉化是實現人工光合成所面臨的一項非常重要的挑戰。從成本和材料的可修飾性考慮,非金屬碳材料具有極強優勢。但是,水系電解液中,碳材料表面的析氫(HER)與CO2還原競爭非常激烈。目前主要的解決方案是通過摻雜氮和硼原子抑制其HER活性,提高其催化CO2還原活
使用廉價高效的催化劑對CO2進行資源能源化轉化是實現人工光合成所面臨的一項非常重要的挑戰。從成本和材料的可修飾性考慮,非金屬碳材料具有極強優勢。但是,水系電解液中,碳材料表面的析氫(HER)與CO2還原競爭非常激烈。目前主要的解決方案是通過摻雜氮和硼原子抑制其HER活性,提高其催化CO2還原活性
近期,中國科學院合肥物質科學研究院固體物理研究所液相激光加工與制備實驗室在液相激光輻照制備硫、氮共摻碳納米管負載氧化鎳電催化劑(NiO/S,N-CNTs)研究方面取得進展,并對其甲醇氧化電催化性能進行了探究。相關結果以全文的形式發表在Carbon 雜志上。 甲醇是一種重要的能量載體,常溫常壓條
自1991年碳納米管(CNT)被日本學者Iijima發現以來,由于碳納米管具有許多異常的力學、電學和化學性能,始終是材料研究的熱點,2009年碳納米管物理性質研究,如載流能力得到翻倍,同時在醫學、能源等領域應用研究不斷拓展,制備和產業化研究也取得了新進展。美國麻省理工學院研究表明,可以在無金
以納米碳管、納米金剛石、石墨烯為代表的納米碳材料在催化中具有廣泛的應用前景,不僅可以作為高性能載體負載金屬及氧化物活性組分,還可直接作為非金屬催化劑用于氧化脫氫、選擇氧化、電催化等反應。相對于傳統的金屬催化體系而言,碳基催化劑具有表面與結構可控、碳資源充足、耐酸堿腐蝕等獨特優勢。通過化學方法將氮
全固態鋰離子電池采用固態電解質替代傳統有機液態電解液,有望從根本主解決電池安全性問題,是電動汽車和規模化儲能理想的化學電源。其關鍵主要包括制備高室溫電導率和電化學穩定性的固態電解質以及適用于全固態鋰離子電池的高能量電極材料、改善電極/固態電解質界面相容性。全固態鋰離子電池的結構包括正極、電解
二氧化鍺因具有很高的儲鋰性能,被認為是一種極具前景的鋰離子電池負極材料。但是由于其在脫/嵌鋰過程中體積膨脹導致二氧化鍺負極材料的破碎和粉化,使其容量迅速衰減,為了改善二氧化鍺的循環性能,開發和設計一種二氧化鍺/碳復合材料不僅可以提高復合物的導電性,同時還可以緩沖電極材料的體積變化,改善電極材料的
隨著社會和科技的發展,人類對電化學儲能技術的需求日益增加,新興儲能系統——鋰硫電池具有理論容量高、成本低、環境友好等優點,備受國內外研究者的關注。而研發高容量鋰硫電池正極材料,對推動新能源動力汽車、便攜式電子設備等領域的發展至關重要。 硫化鋰(Li2S)材料理論容量高達1166 mA h g-
將氫氣直接高效轉化為可廣泛應用的電能,同時產生對人類生存環境友好的水分子,是未來先進可持續能源體系發展的重要目標。為了實現這一目標,作為重要能量轉換裝置的質子交換膜燃料電池將會發揮不可替代的作用,相關研究和開發受到了越來越高度的重視。然而,該類燃料電池中用于將空氣中氧分子高效還原
近日,中國科學院深圳先進技術研究院集成所功能薄膜材料研究中心研究員唐永炳及其團隊聯合香港城市大學教授李振聲成功研發出高氮摻雜的多孔微晶碳納米材料,其作為鉀離子電池負極表現出高容量和長循環特性。相關研究成果"Ultrahigh Nitrogen Doping of Carbon Nano
設計開發高效、穩定的負載型非貴金屬催化劑代替貴金屬催化劑一直是催化領域的重要研究方向。近年來,Fe-N-C非貴金屬碳納米雜化材料,由于其具有優異的氧化還原性能,及其金屬Fe的地球儲量豐富、無毒、生物兼容性強及環境友好等優勢,受到了科研工作者的廣泛關注,并被廣泛應用于電催化反應,如HER、ORR及
近期,中國科學院合肥物質科學研究院固體物理研究所環境與能源納米材料中心在高性能超級電容器與電催化電極材料的構筑及應用方面取得新進展。相關結果以全文形式在Journal of Materials Chemistry A (J. Mater. Chem. A 5, 9873-9881 (2017))