一是物質的高能量總是主動地向同種低能量物質傳遞,低能量物質只能被動吸收同種高能量。二是物質能量轉化式傳遞和遞進式傳遞。三是物質能量在同級介質中容易傳遞,在上級介質中傳遞能力差些,在下級介質中不容易傳遞四是能量傳遞必須由粒子作為介質而波動傳遞,其形式都是“波粒二相性”。因為能量不能離開物質,所以能量只能在物質的粒子中傳遞。......閱讀全文
一是物質的高能量總是主動地向同種低能量物質傳遞,低能量物質只能被動吸收同種高能量。二是物質能量轉化式傳遞和遞進式傳遞。三是物質能量在同級介質中容易傳遞,在上級介質中傳遞能力差些,在下級介質中不容易傳遞四是能量傳遞必須由粒子作為介質而波動傳遞,其形式都是“波粒二相性”。因為能量不能離開物質,所以能量只
能量傳遞可發生在同一自由度或不同自由度之間。例如僅發生平動-平動能量交換的碰撞為彈性碰撞。其它的傳能方式有:轉動-平動、轉動-轉動、振動-振動、振動-平動、振動-轉動等在同一勢能面上進行的傳能以及電子-平動、電子-振動和電子-電子等涉及物種電子態變化的傳能。
能量傳遞的影響因素物質能量傳遞的大小與物質的質量和波動的頻率成正比。物質的質量越大、頻率愈高,則所傳遞的能量就更大,反之傳遞地能量就小。
能量傳遞,energy transfer ,簡稱為傳能,是一種分子通過碰撞進行的能量傳遞、轉移或交換的現象。能量傳遞可發生在同一自由度或不同自由度之間。例如僅發生平動-平動能量交換的碰撞為彈性碰撞。其他的傳能方式有:轉動-平動、轉動-轉動、振動-振動、振動-平動、振動-轉動等在同一勢能面上進行的傳能
能量傳遞上轉換(Energy Transfer Upconversion,ETU)能量傳遞上轉換的研究始于1966年,Auzel提出激發態稀土離子之間可以發生能量傳遞過程,這使得人們意識到通過能量傳遞可以實現上轉換發光。而在此之前,人們對于能量傳遞現象的理解一直局限于激發態離子將能量傳遞給基態離子。
中國科學技術大學單分子科學團隊的董振超研究小組利用精心設計的局域電場增強的亞納米空間分辨的電致發光技術,在國際上首次實現分子間相干偶極耦合的成像觀察,即在單分子水平上對分子間能量傳遞特征成功“拍照”。國際權威學術期刊《自然》31日發表了這項成果。 人們直覺上通常認為,分子間的能量傳遞就像
近日,中科院大連化物所生物質高效轉化研究組(1816組)趙宗保研究員團隊成功構建出甲酸驅動、非天然輔酶介導的途徑選擇性物質和能量傳遞體系,為理性調控胞內能量傳遞和二氧化碳固定研究提供了新思路。 煙酰胺腺嘌呤二核苷酸(NAD)是胞內不可或缺的輔酶,參與能量傳遞等復雜代謝過程。改變胞內NAD等輔酶
光合作用作為地球上生物利用太陽能的重要反應,一直是科學研究關注的重點,是植物抗逆性研究、作物高產研究的熱點。光合作用根據其反應階段可以分為基于光能吸收傳遞轉化的光反應和基于CO2同化等酶促過程的暗反應。光反應作為植物利用太陽能的原初反應,光能的吸收傳遞和轉化主要發生在植物葉片或者藻類的類囊體膜上,由
外置式超聲波能量計屬于流量計的一種,因它安裝使用方便、精度較高而獲得青睞。 如今市場上的外置式超聲波流量計有許多型號,來說一下外置式超聲波流量計的使用優勢。 首先我們要知道的是,如今的流量計的測量范圍已經不僅限于水流了; 其他一些用于工業生產的含有顆粒或者氣
美國勞倫斯伯克利國家實驗室和加州大學伯克利分校的科學家在《物理評論快報》雜志撰文指出,他們設計出了一種擁有自然界中沒有的新奇屬性的“量子超材料”, 它由光組成的人造晶體及被捕獲的超冷原子構成,在很多方面與晶體類似,但結構更“完美”,沒有天然材料內常見的瑕疵。 研究人員表示,他們或能精準定位此種