<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • Antpedia LOGO WIKI資訊

    長春光機所又出新成果全球首創“納米熒光炸彈”

    近日,中科院長春光機所在國際上首次提出超級碳納米點的概念,并研制出基于超級碳納米點的水觸發“納米熒光炸彈”。復合該“納米熒光炸彈”的紙可以實現噴水熒光打印、指紋汗孔熒光采集等多種實際應用。 熒光成像可作為一種有效的技術方法,在數據存儲、數據安全和臨床診斷等領域具有重要應用。該方法很大程度上依賴于新型智能發光材料的開發。近年來,一種新型的碳納米材料,即熒光碳點的出現,使原本非發光的碳材料表現出優異的發光特性,引起國際上極大關注。 以往碳納米點的研究主要針對單個碳納米點的發光特性。中科院長春光機所研制出基于“超級碳納米點”的水觸發“納米熒光炸彈”,使得碳納米點材料成為一種新型的智能發光材料。這種“超級碳納米點”遇水會分解成獨立的小尺寸碳納米點,進而會導致其光致熒光增強。這種“超級碳納米點”的紙復合物,會產生快速的水誘導光致發光增強現象,“超級碳納米點”復合紙可作為無墨打印紙進行噴水熒光打印,實現更加環保的信息存儲和信息加密。......閱讀全文

    長春光機所在國際上首次提出“超級碳納米點”概念

      近日,中國科學院長春光學精密機械與物理研究所曲松楠副研究員及其科研團隊在國際上首次提出超級碳納米點的概念,并研制出基于超級碳納米點的水觸發“納米熒光炸彈”。復合該“納米熒光炸彈”的紙可以實現噴水熒光打印、指紋汗孔熒光采集等多種實際應用,相關該結果發表在國際期刊Advanced Materials

    長春光機所研制出具有高效近紅外吸收/發射的碳納米點

      近日,中國科學院長春光學精密機械與物理研究所研究員曲松楠課題組突破了碳基納米點在近紅外波段發光效率低的難題,首次研制出具有高效近紅外吸收/發光特性的碳納米點,實現了基于碳納米點的活體近紅外熒光成像,并在近紅外-Ⅱ區(1400nm)激發下同時實現了雙光子近紅外發射和三光子紅光發射,在基于碳基納米點

    中科院長春光機所發光碳納米粒子獲新成果

      曲松楠科研團隊的研究不僅證實了碳納米粒子在綠光波段的發光為本征發光,還在綠光波段實現碳納米粒子光泵浦激光。這個發現將直接影響碳納米粒子的應用領域及應用前景。 (a)碳納米粒子原子力掃描圖;(b)碳納米粒子乙醇溶液不同泵浦強度下的發射光譜;(c)碳納米粒子激光遠場光斑;(d)碳納米點激光強度隨偏

    科學家研制出高載負量高熒光亮度碳納米點

      近日,中科院長春光機所曲松楠團隊首次研制出高載負量、高熒光亮度的碳納米點@二氧化硅復合凝膠。該工作利用碳納米點表面大量的羥基官能團引發正硅酸乙酯水解,在碳納米點表面原位包覆二氧化硅。在高濃度的碳納米點乙醇溶液中,實現具有高載負量、高熒光亮度的碳納米點@二氧化硅復合凝膠,并可進一步獲得熒光效率高達

    橙紅光波段最高熒光量子效率的碳納米點研制成功

      近日,中國科學院長春光學精密機械與物理研究所研究員曲松楠(青促會會員)課題組研制出橙紅光波段熒光量子效率高達46%的碳納米點,為國際上最高值。該成果發表在國際期刊《先進材料》上(Adv.   Mater.,2016,DOI:10.1002/adma.201504891)。   發光碳納米點是近十

    長春光機所研制出橙紅光波段最高熒光量子效率的碳納米點

      近日,中國科學院長春光學精密機械與物理研究所研究員曲松楠課題組研制出橙紅光波段熒光量子效率高達46%的碳納米點,為國際上最高值。該成果發表在國際期刊《先進材料》上(Adv. Mater.,2016,DOI:10.1002/adma.201504891)。  發光碳納米點是近十年興起的新型納米發光

    長春光機所制出可見區全譜段熒光碳納米點及復合熒光粉

      近日,中國科學院長春光學精密機械與物理研究所研究員曲松楠課題組首次研制出可見區全譜段熒光碳納米點,并提出一種新的方便快捷的復合方法制備出具有高熒光量子效率的全譜段熒光碳納米點及其復合熒光粉。該工作對于研究碳納米點的發光機理以及推動碳納米點在照明器件領域的應用具有重要意義。該成果發表在國際期刊Ad

    長春光機所在碳納米點發光動力學研究中取得進展

      近日,中國科學院長春光學精密機械與物理研究所曲松楠研究員課題組與荷蘭阿姆斯特丹大學張宏教授合作,利用偏振相關的飛秒瞬態吸收光譜技術,研究了雜元素摻雜碳納米點各項異性的發光以及碳納米點偶極與極性分子偶極之間的相互作用,分析了其偶極發光中心的來源。相關工作發表在在國際期刊《Advanced Opti

    在碳納米點發光動力學研究中取得進展

      近日,中國科學院長春光學精密機械與物理研究所曲松楠研究員課題組與荷蘭阿姆斯特丹大學張宏教授合作,利用偏振相關的飛秒瞬態吸收光譜技術,研究了雜元素摻雜碳納米點各項異性的發光以及碳納米點偶極與極性分子偶極之間的相互作用,分析了其偶極發光中心的來源。  碳納米點具有高的熒光量子效率、優良的光穩定性、好

    碳納米點發光動力學研究取得進展

      近日,中國科學院長春光學精密機械與物理研究所曲松楠研究員課題組與荷蘭阿姆斯特丹大學張宏教授合作,利用偏振相關的飛秒瞬態吸收光譜技術,研究了雜元素摻雜碳納米點各項異性的發光以及碳納米點偶極與極性分子偶極之間的相互作用,分析了其偶極發光中心的來源。  碳納米點具有高的熒光量子效率、優良的光穩定性、好

    長春光機所研制出發光碳納米點復合材料

      近日,中國吉林網、吉刻APP記者從中科院長春光機所獲悉,曲松楠研究員課題組首次研制出基于碳納米點的超穩定、強熒光復合材料,這種復合材料在開發基于碳納米點的光電器件領域具有重要的應用前景。  曲松楠研究員對中國吉林網、吉刻APP記者說,“以往的發光材料主要是有機和無機的,有機材料通過一些小分子的合

    EBioMedicine:巴黎兒童肺部檢出碳納米管

      研究人員從巴黎哮喘兒童的呼吸道采集的細胞中,檢出了碳納米管。這種碳納米管與巴黎汽車的排氣管中發現的人造碳納米管非常相似。這項發表在《EBioMedicine》的研究還指出,這些從兒童體內檢出的碳納米管樣,與從美國很多城市發現的碳納米管,已及印度的蜘蛛網上、極地冰核中發現的碳納米管都非常相似。  

    基于熒光碳納米材料的高帶寬可見光通訊器件研究獲進展

      發光碳納米點是近十年發展起來的一類重要發光材料,但是其存在的聚集誘導熒光淬滅問題一直阻礙其在光電器件中發展,特別是碳納米點在可見光通訊器件方面的應用更是鮮有報道。近日,中國科學院長春光學精密機械與物理研究所曲松楠課題組與復旦大學郭睿倩課題組合作,提出一種新的方便快捷的處理方法制備出具有高熒光量子

    長春光機所在綠光波段實現基于碳納米粒子的光泵浦激光

      近日,中科院長春光學精密機械與物理研究所在綠光波段實現基于碳納米點的光泵浦激光。該結果發表在國際期刊Advanced Functional Materials(DOI: 10.1002/adfm.201303352,SCI影響因子9.7)上,展示了一類基于碳納米粒子的成本低、綠色環保、光

    第一屆全國樣品制備學術報告會大會報告二

      2013年8月3日-4日,由中國儀器儀表學會分析儀器分會樣品制備專業委員主辦,中國科學院大連化學物理研究所協辦的“第一屆全國樣品制備學術報告會”在浪漫之都大連舉行。會議期間來自全國100余位專家、學者及廠商代表共聚一堂,交流、切磋樣品前處理技術的科研進展。分析測試百科網作為受邀媒體對大會進行了全

    我學者首次提出“超級碳納米點”概念

      近日,中科院長春光機所曲松楠團隊在國際上首次提出“超級碳納米點”概念,并研制出基于超級碳納米點的水觸發“納米熒光炸彈”。據了解,復合這種“納米熒光炸彈”的紙,可以實現噴水熒光打印、指紋汗孔熒光采集等多種實際應用。相關成果日前發表于《先進材料》雜志。  據了解,熒光成像可作為一種有效的技術方法,在

    熒光碳納米顆粒合成發現新方法

      熒光納米顆粒因其優良的特性及其在生物、化學等領域的廣泛應用,受到了廣泛的關注,如熒光金/銀納米顆粒應用于重金屬離子的檢測。但昂貴的成本限制了這些金屬納米顆粒的應用。目前,熒光碳納米顆粒由于其廉價的原料、良好的生物兼容性和很好的光穩定性等優點而備受關注。然而,現有報道關于熒光碳納米顆粒的合成及應用

    碳納米管在腫瘤診斷與治療研究中的進展

     摘 要 碳納米管具有獨特的結構及性質,被廣泛應用于生物醫學領域。本文對碳納米管在生物醫學特別是腫瘤早期診斷以及治療方面的研究現狀進行了綜述,分析了現有的研究特點,并展望了該領域的發展趨勢。 關鍵詞 碳納米管, 碳納米角, 生物醫學, 腫瘤, 診斷, 治療,評述 1 引

    碳納米管技術獲突破 全新應用領域將開啟

      據外媒消息,近日牛津大學研究團隊開辟了碳納米管(CNT)在生物醫療領域中的應用。研究團隊首次將X射線熒光光譜分析(XRF)中的造影劑,密封進比人類頭發還細5萬倍的碳納米管中進行成像。造影劑是介入放射學中常用的藥物之一,通常被注入人體組織或器官后用于增強放射成像,由于多為非生物的化學制品,對人體有

    日本首次合成碳納米帶

       日本名古屋大學的研究組最近首次成功合成了國際學界60年前理論上提出的筒狀碳分子“碳納米帶”。碳納米帶比同樣為筒狀結構的碳納米管(CNT)短,用于鑄模可獲得期望結構的碳納米管,將促進碳納米管的迅速普及。該成果發表在4月14日的《科學》雜志的電子版上。   研究組在合成無扭曲帶狀分子的基礎上,設計

    我國學者成功研制多功能熒光介孔碳基納米盤

       近期,中科院強磁場科學中心王輝研究員與華盛頓大學Miqin Zhang教授等在癌癥碳基藥物載體方面取得新進展:制備出一種類紅細胞納米載體---多功能熒光介孔碳基納米盤。   納米尺度的藥物輸送載體因其響應型的藥物釋放、多模型的體內成像以及復合治療的協同效應,近年來在生物醫學領域展現了極高的應用

    新納米管傳感器能檢測到單個爆炸物分子

      麻省理工大學研究人員研發出一種超級靈敏的新型探測儀,將檢測爆炸物的能力推進到一個分子的最后極限,比目前機場用的爆炸檢測儀靈敏很多。相關論文發表在本周《美國國家科學院院刊》網站上。  該技術利用了蜜蜂毒液中一種稱為bombolitins的蛋白質片段。研究人員將這種蛋白質片斷涂在碳納米管上后發現,這

    研究在單一手性碳納米管的長共軛結構合成方面取得進展

      碳納米管可被認為是僅包含sp2鍵合原子的全碳基管狀共軛聚合物,然而迄今為止,直徑特定的碳納米管片段長共軛聚合物尚無研究報道。近日,中國科學技術大學教授杜平武課題組通過精確分子設計,合成出單一手性指數單壁碳納米管的長共軛鏈段,并研究了其電子傳輸和空穴傳輸性質。該工作以A Long π-Conjug

    研究首次合成單一手性碳納米管的長共軛鏈段

      記者從中國科學技術大學獲悉,該校杜平武教授課題組通過精確分子設計,在世界上合成出首例單一手性指數單壁碳納米管的長共軛鏈段。該成果日前以封面文章的形式發表于《美國化學會志》雜志上。  碳納米管可被認為是僅包含sp2鍵合原子的全碳基管狀共軛聚合物,然而直徑特定的碳納米管片段長共軛聚合物尚無研究報道。

    腫瘤標志物 7 種檢測方法大比拼

      腫瘤具有高死亡率、高轉移率和高復發率,是危害人類健康的重大疾病。診斷腫瘤的傳統方法有病理組織活檢、核磁共振成像(magnetic resonance imaging,MRI)、電子計算機斷層掃描(computed tomography,CT)、B 超、X 線胸片、內鏡檢查等。這些檢查對于腫瘤早期

    腫瘤標志物 7 種檢測方法大比拼

      腫瘤具有高死亡率、高轉移率和高復發率,是危害人類健康的重大疾病。診斷腫瘤的傳統方法有病理組織活檢、核磁共振成像(magnetic resonance imaging,MRI)、電子計算機斷層掃描(computed tomography,CT)、B 超、X 線胸片、內鏡檢查等。這些檢查對于腫瘤早期

    環渤海色質譜學者精彩報告紛呈 貫徹“綠色化學”理念

      分析測試百科網訊 2016年8月11日,由遼寧省分析測試協會,遼寧省分析科學研究院主辦的“第四屆環渤海色質譜學術報告會暨遼寧省第十屆學術年會分會”在丹東召開(相關報道:第四屆環渤海色譜質譜學術會在丹東開幕 首次發布徽標)。大會上,眾位環渤海的

    2016國際熒光前沿技術高端論壇(FluoroFest)在京開幕

      分析測試百科網訊 2016年4月19日,2016國際熒光前沿技術高端論壇(2016 FluoroFest)在北京大學開幕。FluoroFest 是一個全球性的熒光學術論壇,旨在促進相關領域的廣大科技工作者交流最新熒光技術,推動跨學科及領域的經驗分享與合作。

    第20屆全國分子光譜會分會——熒光免疫傳感技術

      2018年10月20日,第二十屆全國分子光譜學學術會議暨2018年光譜年會開幕式暨40周年慶典在青島舉辦(相關報道:慶祝中國光譜40年 構建中國光譜新時代)。在第一天的大會報告之后(相關報道:古人學問無遺力 今有分子光譜百家鳴),組委會也安排了精彩分會報告。分析測試百科網作為合作媒體為您帶來熒光

    微RNA檢測新方法:納米技術改變液體活檢

      日前,美國研究人員利用單壁碳納米管的光譜特性研制了一種能直接檢測體液中微RNA的納米傳感器。這種傳感器彌補了傳統微RNA檢測方法的缺陷,有望幫助醫療人員對患者進行早期診斷。  在癌癥早期診斷領域,通過檢測血液或尿液中與腫瘤相關的生物標記物來診斷癌癥的液體活檢與傳統活檢相比侵入性更低,更為經濟省時

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频