中國科大在高效去除氫氣中微量CO研究方面取得進展
氫能是未來最理想的一種清潔能源。氫燃料電池汽車以氫氣為燃料,能量轉化效率高,清潔零排放,是未來新能源清潔動力汽車的主要發展方向之一。然而氫燃料電池汽車的推廣目前仍然困難重重,其中一個關鍵難題是氫燃料電池電極的CO中毒問題。現階段,氫氣主要來源于甲醇和天然氣等碳氫化合物的水蒸汽重整、水煤氣變換反應等,通常含有0.5%~2%的微量CO。作為氫燃料電池汽車的“心臟”,燃料電池電極極易被CO雜質氣體毒化,從而致使電池性能降低和壽命縮短,嚴重限制了該類汽車的推廣。富氫氛圍CO優先氧化(PROX)是車載去除氫氣中微量CO的最理想方式。然而現有PROX催化劑工作溫度相對較高(室溫以上)且區間窄,無法在寒冷條件下為氫燃料電池頻繁冷啟動過程中提供有效保護。 針對該技術難題,中國科學技術大學教授路軍嶺、韋世強、楊金龍等課題組密切合作,利用原子層沉積技術(ALD),首次設計出一種新型Fe1(OH)x-Pt單位點界面催化劑結構(圖1),并在低溫高......閱讀全文
金屬納米顆粒可清除口腔細菌
由莫斯科國立科技大學(NUST MISIS)與維亞茨基國立大學專家共同研制的新型牙齒清潔劑,可以從根本上改變口腔的微觀環境,并消除在牙齒上形成的菌斑層,其效果已在基洛夫國家醫學科學院口腔研究室的臨床實踐中得到證實。 實驗中,志愿者使用這種含有金屬納米顆粒的新型牙齒清潔劑一個月后,口腔中菌群數量
國家納米中心等在金屬納米顆粒電子器件研究中獲進展
電子元器件的多功能化是應用電子技術發展的重要趨勢,因而非硅基材料越來越受到研究人員的重視。其中,由于小尺寸效應其性質有別于本體材料的納米顆粒是一個最典型的研究對象。采用半導體量子點構建的太陽能電池的效率已經有了大幅度的提升,晶體管的加工性能也得到了極大的改善,光電探測器的靈敏度至今還未被超越。金
多元金屬納米顆粒管及復合納米催化劑的設計取得進展
中科大多元金屬納米顆粒管及復合納米催化劑的設計與制備取得系列進展 隨著環境意識的增強和對有限自然資源認識的加深,為了減少對化石能源等不可再生資源的依賴,燃料電池作為高效和低污染發電裝置研究受到高度關注和重視。但是,燃料電池催化劑成本高、反應活性低和穩定性差等缺點仍然嚴重制約其商業化和廣泛應用。
23特殊形狀納米顆粒/金納米星/金納米立方/銀納米立方/金納米籠/鈀納米顆粒
23特殊形狀納米顆粒/金納米星/金納米立方/銀納米立方/金納米籠/鈀納米顆粒百歐泰生物提供多種各粒徑的水溶性金納米顆粒、油溶性金納米顆粒、PEG化球金納米顆粒及特殊形狀金納米顆粒、熒光標記金納米顆粒、還可以根據客戶要求提供定制服務。TypeCat NoDiameterLength(nm)ODSize
碳包覆過渡金屬基納米顆粒合成方面取得進展
近期,中國科學院合肥物質科學研究院固體物理研究所液相激光加工與制備實驗室在碳包覆過渡金屬基納米顆粒合成方面取得進展,相關成果發表在ACS Applied Nano Materials (DOI: 10.1021/acsanm.8b01541)雜志上。 近年來,碳包覆納米材料因其獨特的物理與化學
納米顆粒跟蹤分析技術對藥物輸送納米顆粒的觀察
納米顆粒在藥物輸送中的應用持續迅猛發展。?納米顆粒可提供優良的藥代動力學特性、長效和緩釋以及特定細胞、組織或器官的靶定。?可利用的能用于疾病治療的新生物活性化合物的發現速度在不斷遞減,這推動了人們對納米顆粒藥物輸送的關注。?每年進入市場的新藥越來越少,利用納米顆粒的多用途和多功能結構進行藥物輸送的興
利用納米顆粒跟蹤分析(NTA)技術對藥物輸送納米顆粒...
利用納米顆粒跟蹤分析(NTA)技術對藥物輸送納米顆粒進行直接觀察、測定大小和計數簡介 納米顆粒在藥物輸送中的應用持續迅猛發展。 納米顆粒可提供優良的藥代動力學特性、長效和緩釋以及特定細胞、組織或器官的靶定。 可利用的能用于疾病治療的新生物活性化合物的發現速度在不斷遞減,這推動了人們對納米顆粒
10-金納米顆粒/Gold-nanoparticals/納米金
10 金納米顆粒/Gold?nanoparticals/納米金金納米粒子是一種經典的納米粒子,它的高催化活性和能通過自組裝形成納米結構的特點,使其應用在高級材料的制造上。自組裝技術是指通過分子間特殊的相互作用,如靜電吸引、氫鍵、疏水性締合等組裝成有序的納米結構,實現高性能化和多功能化。TypeCat
納米顆粒識別血管斑塊
? 現行醫療技術中,醫生只能識別由于血小板聚集而變窄的血管。方法是從手臂、腹股溝或頸部的血管處開一個切口植入導管,從導管注入染色劑,使X射線顯示狹窄部位。日前,由凱斯西儲大學科學家率領的一組研究人員開發了一種多功能納米顆粒,能使磁共振成像(MRI)定位動脈粥樣硬化引起的血管斑塊。此項技術向無創性
納米顆粒的分散技術
? ? 顆粒分散是指粉體顆粒在液相介質中分離散開并在整個液相中均勻頒的過程,根據分散方法的不同,可分為以下幾種:一、機械攪拌分散主要借助外佛羅里達剪切力或撞擊力等機械能,使納米粒子在介質中充分分散,通過對分散體系施加機械力,引起體系內物質的物理、化學性質變化以及伴隨的一系列化學反應來達到分散目的,但
納米顆粒的分散技術
顆粒分散是指粉體顆粒在液相介質中分離散開并在整個液相中均勻頒的過程,根據分散方法的不同,可分為以下幾種:一、機械攪拌分散主要借助外佛羅里達剪切力或撞擊力等機械能,使納米粒子在介質中充分分散,通過對分散體系施加機械力,引起體系內物質的物理、化學性質變化以及伴隨的一系列化學反應來達到分散目的,但是研磨過
可重復使用的納米顆粒涂層海綿去除水中的重金屬
于一種實驗性的新海綿可以讓從水中去除重金屬污染物的過程比以往更容易。只需一次處理,該設備就能將受污染的水降低到安全可飲用的水平。在之前兩項研究的基礎上,伊利諾伊州西北大學的科學家正在開發這項技術。 研究人員開始使用一種廉價的市售纖維素海綿,并將其置于摻有錳的戈壁石納米顆粒的泥漿中。然后他們將其
新型金屬釕聚合物納米顆粒開創癌癥治療的新方法
1969年,順鉑的發現激起了許多人對金屬抗腫瘤藥物的關注。長期使用鉑類藥物所產生的嚴重副作用及耐藥性,使得一些研究人員逐漸將目光轉移到開發其他種類的金屬抗癌藥物。釕類金屬化合物是較具前景的一類,其中光敏型釕配合物因其較高的選擇性被認為是最有可能脫穎而出的抗癌新星。但是小分子的釕配合物體積小、易清
基于納米顆粒的疫苗平臺
科研人員報告了一種基于納米顆粒的疫苗平臺,它能夠帶來針對多種病原體的免疫力。對正在進化的病原體和突然的疾病暴發的有效響應需要安全而有效的疫苗,能夠迅速且在床邊按需生產。Daniel Anderson及其同事開發了一個基于納米顆粒的疫苗平臺,這些納米顆粒是由大的重復分支的分子組成,它們聚集并俘獲了
納米顆粒如何加速醫學研究?
近年來,科學家們在很多研究中都利用納米顆粒來進行疾病的治療和診斷等,比如有研究人員就利用納米顆粒開發出了能檢測胰腺癌的新型生物傳感器;那么近期納米顆粒還在哪些方面推動了醫學研究呢?本文中,小編對相關研究進行了整理,分享給大家! 【1】Nat Biotechnol:重磅!科學家開發出能攜帶CRI
定點“爆破”的納米顆粒藥物
以納米藥物制藥劑為基礎的納米微粒藥物輸送技術是當今藥學的重要發展方向之一。雖然納米技術問世不久,但在醫藥領域,致力于分子水平上的研究已有較長歷史。本文介紹利用納米顆粒為載體實現對藥物的選擇性釋放,用于肺腫瘤的治療。 納米粒子作為載體的藥物可以用來防治肺癌:來自德國的NIM和
成都生物所金納米顆粒可視化檢測重金屬離子研究獲進展
反應過程 隨著納米技術的飛速發展和納米產業的不斷擴大,許多納米材料不斷地涌現出來。由于金納米顆粒具有較高的摩爾吸光系數和依靠距離可變的光學性質,它在化學、物理和生物等領域已有廣泛的應用,其中可視化檢測則是金納米顆粒重要的應用之一。 中國科學院成都生物研究所天然產物研究中心邵華武研
Science:在二氧化硅載體上合成超小雙金屬納米顆粒
南卡羅萊納大學J. R. Regalbuto(通訊作者)設計了一種相對簡單、高效、普適的方法制備高度分散、良好合金化的雙金屬納米顆粒,該方法可實現貴金屬和堿金屬(Pt、Pd、Co、Cu、Ni)中任意兩種金屬的共同吸附,制造出分散均勻,合金化均勻,顆粒平均尺寸為0.9-1.4納米的負載型雙金屬納米
單顆粒ICPMS應用-|-西紅柿吸收金納米顆粒
伴隨著工程納米材料在各個不同產品和過程的使用不斷增加,人們開始對納米顆粒的釋放對環境和人類健康造成的影響產生了擔心。要研究納米顆粒對環境的影響,就必須探索納米顆粒如何通過在水和土壤中的遷徙而被植物吸收的。如果納米顆粒最終為食品作物所吸收,那么人類就直接面臨ENPs釋放造成的影響。 這項研究
單顆粒ICPMS應用:西紅柿吸收金納米顆粒
伴隨著工程納米材料在各個不同產品和過程的使用不斷增加,人們開始對納米顆粒的釋放對環境和人類健康造成的影響產生了擔心。要研究納米顆粒對環境的影響,就必須探索納米顆粒如何通過在水和土壤中的遷徙而被植物吸收的。如果納米顆粒最終為食品作物所吸收,那么人類就直接面臨ENPs釋放造成的影響。?這項研究工作的目標
納米顆粒有望治療心肌梗塞
《生物醫學光學快報》刊文稱,俄羅斯科學家發現一種能夠在心臟組織破損處聚集的納米顆粒,可用于評估心梗的嚴重程度,未來還可用其將藥物直接送至心臟。 圣彼得堡國立巴甫洛夫醫科大學專家德米特里·索寧解釋稱:“還需進一步研究這種納米顆粒的生物學分布、毒性及對心臟保護的有效性,以確定其可用于臨床治療。”
新型光鑷可捕獲納米顆粒
光鑷是一項正在飛速發展的技術,近年來,圍繞光鑷的新型應用層出不窮。光鑷是用高度聚焦的激光束的焦點捕獲粒子,從而使研究人員無需任何物理接觸即可操縱物體的技術。目前,光鑷已被用于捕獲微米級的物體,然而研究人員日益渴望將光鑷的應用擴展到納米級粒子上去。由法國雷恩第一大學Janine Emile和Oli
納米顆粒穿越胎盤屏障有玄機
近日,國家納米科學中心趙宇亮和聶廣軍課題組研究發現,一定尺度的金納米顆粒可以顯著地通透母鼠胎盤屏障,進入胎兒體內;納米顆粒的特性,如納米表面修飾和納米尺寸等,以及母體和胎兒自身的生理特征,如胚胎發育階段等,都是決定納米顆粒穿越胎盤屏障進入胎兒能力強弱的重要因素。該成果日前發表于《自
油墨中納米顆粒的表征方法
表征某一特定過程種顆粒體系的特性時不僅需要考慮到多方面因素的影響還要考慮到最終的使用。表征顆粒體系時必須要包括但不僅僅局限于以下幾點:粒徑分布、表面積、孔隙率、形狀和顆粒的帶電性。實際上,將所有的表征參數結合起來可以讓我們對顆粒有更清晰的認識。通過粉體流動性、分散性、藥物療效、干燥涂層效果、懸浮穩定
月球土壤怪異之謎:內含納米顆粒
借助于同步加速器納米X線體層照相術,澳大利亞土壤學家馬萊克-扎比克對月球土壤樣本進行了研究,最后揭示出月球土壤一些怪異特征背后的機械學原理。納米X線體層照相術使用透射X光顯微鏡,用于研究納米材料,能夠拍攝納米顆粒的3D圖像。 1969年,“阿波羅11”號宇航員登上月球。在月球塵土層中,他們發
金屬所納米碳非金屬催化本質研究取得進展
納米碳材料在烷烴的氧化脫氫等反應中展現出反應活性高、烯烴產物選擇性高、催化活性保持時間長等優勢,其作為一種可再生的環境友好催化劑,可以替代傳統的金屬及其氧化物催化劑直接應用于烷烴催化轉化等相關反應中。經過近幾年的迅猛發展,納米碳催化領域在新型催化劑的開發制備、新穎催化反應體系的建立等方面獲得了多
避免金屬顆粒進入大腦有妙招
英國蘭卡斯特大學的Barbara Maher發現,人們大腦中的氧化鐵小粒子或來自于呼吸到的交通煙霧。 這些磁性粒子已經證明與阿爾茨海默氏癥存在關聯,并認為會生成能夠殺死神經細胞的活性化合物。人們已經知道人腦中存在磁性粒子,但是在此之前大家都認為它們來自于自然來源。 Maher的團隊發現,這
重金屬離子納米檢測技術
反應過程 隨著納米技術的飛速發展和納米產業的不斷擴大,許多納米材料不斷地涌現出來。由于金納米顆粒具有較高的摩爾吸光系數和依靠距離可變的光學性質,它在化學、物理和生物等領域已有廣泛的應用,其中可視化檢測則是金納米顆粒重要的應用之一。 中國科學院成都生物研究所天然產物研究中心邵華武研
什么是納米晶非晶態金屬
它是一種特殊用途的金屬,粒徑已經達到納米級,但是沒有固定的形態結構,納米非晶態金屬比納米晶態金屬有更大的比表面積。因此其在催化劑行業用途比較廣泛。如納米鎳非晶態顆粒,是一種高效的燃料催化劑。
單顆粒ICPMS在納米顆粒檢測中的應用
隨著納米顆粒在消費品中的使用越來越廣泛,納米顆粒與人體的接觸與遷移也越來越受到關注,并由此帶來一個問題:消費品中的納米顆粒會遷移到人體中嗎?人們主要通過身體接觸來與這些產品發生互動,所以有必要了解納米顆粒是如何通過身體接觸實現向人體遷移的。本文探討了納米材料表面上的納米顆粒如何遷移到抹布上,并集中討