<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • Antpedia LOGO WIKI資訊

    什么是綠色熒光蛋白?

    綠色熒光蛋白分子的形狀呈圓柱形,就像一個桶,負責發光的基團位于桶中央,因此,綠色熒光蛋白可形象地比喻成一個裝有色素的“油漆桶”。裝在“桶”中的發光基團對藍色光照特別敏感。當它受到藍光照射時,會吸收藍光的部分能量,然后發射出綠色的熒光。利用這一性質,生物學家們可以用綠色熒光蛋白來標記幾乎任何生物分子或細胞,然后在藍光照射下進行顯微鏡觀察。原本黑暗或透明的視場馬上變得星光點點——那是被標記了的活動目標。對生物活體樣本的實時觀察,在綠色熒光蛋白被發現和應用以前,是根本不可想象的。而這種徹底改變了生物學研究的蛋白質,最初是從一種廣泛生活于太平洋海域的發光水母體內分離得到的。 在大自然中,具有發光能力的生物有不少,螢火蟲是陸地上最為我們所熟悉的發光生物,中國古代還有“捕螢數百入囊內照明夜讀”的佳話。在海洋里,某些水母、珊瑚和深海魚類也有發光的能力。特別是有的肉食性魚類專門靠一條閃著熒光的觸角來把其他小魚吸引到自己的嘴邊,《海底總動員......閱讀全文

    三位熒光蛋白研究先驅獲諾貝爾化學獎

    多色熒光蛋白在所跟蹤細胞中的圖示。 下村修現年80歲的下村修1928年出生于日本京都府,1960年獲得名古屋大學理學博士學位后赴美,先后在美國普林斯頓大學、波士頓大學和伍茲霍爾海洋生物實驗所工作。他1962年從一種水母中發現了熒光蛋白,被譽為生物發光研究第一人。 ▲馬丁·沙爾

    “點亮了生物學”的故事

      熒光蛋白標記神經細胞是研究大腦的一項重要的工具,帶動了腦彩虹等技術的發展。剛剛去世的華裔科學家錢永健則為改造綠色熒光蛋白做出了重要的工作,改變了熒光蛋白分子的一個氨基酸,使其發光更強、更穩定。  美國喬治城大學吳建永教授曾在2014年介紹腦彩虹技術時著重介紹了熒光蛋白的故事。為紀念錢永健博士對科

    自噬流的檢測方法

      自噬是真核細胞降解長壽蛋白、錯誤折疊蛋白和受損細胞器的重要生物學過程。細胞自噬由多個步驟組成, 其中包括: ① 吞噬泡的形成; ② 自噬體的形成; ③ 自噬體與溶酶體融合形成自噬溶酶體; ④ 自噬溶酶體的降解。自噬流是這些步驟在細胞內連續出現的動態過程, 自噬流中的任一環節出現障礙自噬將無法完成

    解讀2008諾貝爾自然科學獎:解決人類的難題

    從今年的諾貝爾科學獎中我們能獲得什么啟示?在歡欣鼓舞的背后,我們發現,獎項內容的字里行間,閃現著一些讓人類不太如意的負面詞匯:疾病、艾滋、腫瘤…… 當世界越來越幸福的時候,我們應該注意到:苦難依然此起彼伏。世上沒有皇帝神仙,解決它們只能從我們的思想降臨開始。 2008諾獎:人類的難題 □文/本

    活體生物發光成像技術的最新進展

    活體動物體內光學成像(Optical in vivo Imaging)主要采用生物發光(bioluminescence)與熒光(fluorescence)兩種技術。生物發光是用熒光素酶(Luciferase)基因標記細胞或DNA,而熒光技術則采用熒光報告基團(GFP、RFP, Cyt及dyes等)進

    形形色色的蛋白標簽(一)

      一提到蛋白研究,首先跳入腦海的當然是抗體。的確,很多蛋白實驗都離不開抗體。然而,即使抗體公司時不時推出新產品,但許多蛋白還是沒有相應的抗體,我們只能望電腦興嘆。而且,也有很多抗體無能為力的情況,比如觀察蛋白在細胞內的運輸。所幸,各種各樣的蛋白標簽讓我們能夠從容應對這些挑戰。   遺傳標簽  

    圖解光誘導熒光蛋白系統

    GFP蛋白曾經為蛋白質定位等相關研究帶來革命性的進展,而隨著具有和GFP類似遺傳學特征的光學指示劑蛋白的出現,蛋白質相關的動態研究也將獲得更多的手段和技術,本文詳細介紹了激光誘導熒光系統在蛋白質研究中的應用。 近年來隨著蛋白質學研究的進展,研究人員相繼發現和特異克隆了一些特殊蛋白質。這些蛋

    超分辨顯微技術淺析

    光學顯微成像的衍射極限 生物醫學成像技術是基礎生物學研究和臨床醫學最重要的工具之一。回顧歷史,已有多位科學家憑借在成像技術方面的突破獲得諾貝爾獎。其中,Roentgen 因發現 X 射線獲得 1901 年諾貝爾物理學獎; Zernike 因發明相襯顯微鏡獲得 1953 年諾貝爾

    超分辨顯微技術淺析

    光學顯微成像的衍射極限生物醫學成像技術是基礎生物學研究和臨床醫學最重要的工具之一。回顧歷史,已有多位科學家憑借在成像技術方面的突破獲得諾貝爾獎。其中,Roentgen 因發現 X 射線獲得 1901 年諾貝爾物理學獎; Zernike 因發明相襯顯微鏡獲得 1953 年諾貝爾物理學獎; Ruska

    綠色熒光蛋白在自然生活中起到的作用

      綠色熒光蛋的發光機理比熒光素/熒光素酶要簡單得多。一種熒光素酶只能與相對應的一種熒光素合作來發光,而綠色熒光蛋白并不需要與其他物質合作,只需要用藍光照射,就能自己發光。  在生物學研究中,科學家們常常利用這種能自己發光的熒光分子來作為生物體的標記。將這種熒光分子通過化學方法掛在其他不可見的分子上

    狂言50年要拿30個諾獎的日本,如今怎么樣了?

      2019年10月9日,日本化學家吉野彰(Akira Yoshino)因在鋰離子電池的發明和應用領域做出的卓越貢獻,與美國科學家 John B. Goodenough、英國科學獎 M. Stanley Whittingham 一起榮獲2019年諾貝爾化學獎。吉野彰成為日本第27位諾貝爾獎得主。  

    那個要50年拿30個諾獎的日本,如今怎么樣了?

      2019年10月9日,日本化學家吉野彰(Akira Yoshino)因在鋰離子電池的發明和應用領域做出的卓越貢獻,與美國科學家 John B. Goodenough、英國科學獎 M. Stanley Whittingham 一起榮獲2019年諾貝爾化學獎。吉野彰成為日本第27位諾貝爾獎得主。  

    微生物細胞體內實現多色熒光信號的同時成像

      熒光蛋白的發現革新了生命科學的研究,應用熒光蛋白可以觀測到細胞內部的活動,例如熒光蛋白可以標記特定的蛋白,也可以作為報告探針用于檢測特定基因的活性。熒光蛋白的開發和進化使其光譜得到了全面的擴展,也使得多個熒光蛋白的同時使用成為可能。  目前,多色成像較多局限于兩個熒光蛋白的同時使用。通常是選取兩

    我國學者研制多色熒光成像技術,可精準分離特定信號

      熒光蛋白的發現革新了生命科學的研究,應用熒光蛋白可以觀測到細胞內部的活動,例如熒光蛋白可以標記特定的蛋白,也可以作為報告探針用于檢測特定基因的活性。熒光蛋白的開發和進化使其光譜得到了全面的擴展,也使得多個熒光蛋白的同時使用成為可能。圖:(左)1-4色熒光報告系統的質粒系統示意圖,(右)串色校正后

    饒毅:美妙的生物熒光分子與好奇的生物化學家

    下村修 做出應獲諾貝爾獎工作的科學家,幾十年默默無聞;  被廣泛應用的分子,很少人知其發現者; 原始論文鮮為人知,后繼論文倒很熱門;  曾失明的人,發現了美麗的發光蛋白; 低調的父親,出了高調的兒子。  這里簡介一項生物化學研究,講一個科學家的故事,

    【分享】幾種常用的蛋白標簽的功能和優點

      重組蛋白表達技術現已經廣泛應用于生物學各個具體領域。特別是體內功能研究和蛋白質的大規模生產都需要應用重組蛋白表達載體。本文將簡要介紹幾個常用的蛋白標簽及其功能和優點。  一. GST標簽  GST(谷胱甘肽巰基轉移酶) 標簽蛋白本身是一個在解毒過程中起到重要作用的轉移酶,它的天然大小為26KD。

    活體動物體內光學成像(七)

    關于生物發光與熒光及其它技術的比較 34. 熒光檢測與生物發光檢測的優勢與劣勢比較如何?  熒光發光需要激發光,但生物體內很多物質在受到激發光激發后,也會發出熒光,產生的非特異性熒光會影響到檢測靈敏度。特別是當發光細胞深藏于組織內部,則需要較高能量的激發光源,也就會產生很強的背景噪音。作為

    張鋒:如何在34歲躋身于世界頂尖生物學家?

      豉汁蒸鳳爪端上桌后,一個小女孩頑皮地用筷子噠噠地敲打著餐桌。一位穿著Polo衫和牛仔褲的男士,正在和自己的小女兒、妻子和母親享用著廣式點心。在波士頓唐人街這個喧鬧的餐廳,沒人會多瞄一眼這位男青年。  沒人能猜到,34歲的張鋒會是這一代人中公認的最具轉化能力的生物學家,在不久的將來可能會在兩個領域

    人肺癌裸鼠原位移植模型的建立實驗

    實驗方法原理 利用逆轉錄病毒轉染法將增強型綠色熒光蛋白基因導入人肺癌大細胞系NCI-H460,采用外科原位移植法建立肺癌原位移植模型。定期通過小動物活體熒光成像系統觀察腫瘤生長,利用相關性檢驗分析熒光面積和腫瘤體積之間的相關關系,并觀察原位移植術后裸鼠的生存期和腫瘤轉移情況。

    人肺癌裸鼠原位移植模型的建立實驗

    實驗方法原理 利用逆轉錄病毒轉染法將增強型綠色熒光蛋白基因導入人肺癌大細胞系NCI-H460,采用外科原位移植法建立肺癌原位移植模型。定期通過小動物活體熒光成像系統觀察腫瘤生長,利用相關性檢驗分析熒光面積和腫瘤體積之間的相關關系,并觀察原位移植術后裸鼠的生存期和腫瘤轉移情況。實驗材料 BALB cn

    人肺癌裸鼠原位移植模型的建立實驗——外科原位移植法

    人肺癌裸鼠原位移植模型的建立可用于:(1)建立一個良好的肺癌動物實驗研究平臺;(2)實時監測原發腫瘤的生長和轉移;(3)在細胞和分子水平對活體內的生理和病理過程進行定性或定量可視化觀察。實驗方法原理利用逆轉錄病毒轉染法將增強型綠色熒光蛋白基因導入人肺癌大細胞系NCI-H460,采用外科原位移植法建立

    我國首例熒光克隆豬懷孕 明年1月當媽媽

    東北網12月25日電 記者日前從負責轉基因克隆豬項目的東北農業大學生命科學學院了解到,去年出生的3頭綠色熒光克隆豬都已懷孕,明年1月份,它們就要當上“媽媽”了。 據該課題組的科研人員尹智介紹,一年多來,在課題組成員和專門飼養員的精心照顧下,3頭小豬生長很快。目前發育良好,體重達標,并已經通過正常與

    【技術指南】流式細胞儀和流式細胞術

    Jay Haron Ph. D.   jay.haron@gmail.com   BD Biosciences, San Diego, United States 引用 實驗材料和方法  從1968年最

    常見發光免疫分析技術的比較

    發光免疫分析是一種靈敏度高、特異性強、檢測快速及無放射危害的分析技術。70年代末以來得到了迅速發展,目前在國際上已經實現商品化和產業化的發光免疫分析產品,基本上可以分為:化學發光、時間分辨熒光(也稱時間延遲光致發光)、電化學發光(也稱場致發光和電致發光)幾種。   &n

    常見發光免疫分析技術的比較

    免疫學技術的迅速發展對精度的要求越來越高,一般的酶免檢測技術已逐漸無法適應這種形勢的需要。現今發展的主流已不再是用放射性同位素標記的測定方法(避免污染環境及對人體損害),而是轉向于能在任何地方操作的快速均相和固相測定,最終趨向于能夠檢測到皮克或10負18摩爾級的、非同位素的、自動或半自動的實驗室測定

    利用“無創”技術檢測活細胞中熒光蛋白表達(一)

    簡介在過去的五年中,熒光蛋白在監測體內生物學研究中,起到越來越重要的作用。源于維多利亞多管發光水母中的綠色熒光蛋白(GFP)是最早被我們應用的熒光蛋白,但是隨著時間的推移,現在我們可以使用的熒光蛋白種類也越加豐富,包括加強型的變異GFP蛋白、從其他種類水母中發現的熒光蛋白和珊瑚礁蛋白。它們都可以在眾

    盤點:31項與免疫學有關的分子生物學實驗技術

      現代分子生物學和免疫學的進展加深了我們對許多疾病的了解,并且導致了免疫新策略的產生,免疫學檢測方法可分為體液免疫和細胞免疫測定。本文盤點了與免疫學有關的分子生物學實驗技術匯總。  一、GST pull-down實驗  GST是指谷胱甘肽巰基轉移酶,GST pull-down實驗是一個行之有效的驗

    酶標儀利用”無創”技術檢測活細胞熒光蛋白(一)

    簡介在過去的五年中,熒光蛋白在監測體內生物學研究中,起到越來越重要的作用。源于維多利亞多管發光水母中的綠色熒光蛋白(GFP)是最早被我們應用的熒光蛋白,但是隨著時間的推移,現在我們可以使用的熒光蛋白種類也越加豐富,包括加強型的變異GFP蛋白、從其他種類水母中發現的熒光蛋白和珊瑚礁蛋白。它們都可以在眾

    流式細胞術常見問題問答

    1、流式細胞儀上的FL2-W FL2-A FL2-H 分別是做什么的? FL2-W是只檢測熒光的脈沖寬度, FL2-H是指脈沖高度。通常在做細胞周期分析時應用,用于去除粘連細胞。 2、流式同型對照怎樣選擇? 同型對照(Isotype Control):使用與一抗相同

    日本培育出可復制人類疾病的熒光猴

      圖片來源:Hideyuki Okano/Keio University; Erika Sasaki/CIEA   北京時間5月28日消息,據國外媒體報道,日本科學家5月27日宣布,他們已經培育出世界上第一批可以復制人類疾病并且會發光的轉基因靈長類動物。在一種基因的幫助下,他們讓培育出的狨猴

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频