最近年來在枯草桿菌,鼠傷寒沙門氏桿菌等細胞及噬菌體T4、T5、T7中分離到DNA聚合酶,這里只介紹T4DNA聚合酶。T4DNA聚合酶與大腸桿菌DNA聚合酶Ⅰ相似,也是一條多肽鏈,分子量亦相近,但 氨基酸組成不同,它至少含有15個半胱氨酸殘基。但是,它在作用上與大腸桿菌DNApol不同;[1]它無5'→3'外切酶活性;[2]它需要一條有 引物的單鏈DNA作模板。在有缺口的雙鏈DNA作模板時,需要有 基因32蛋白的輔助(基因32蛋白在T4DNA復制中的作用和大腸桿菌 單鏈結合蛋白的作用相似,基因32蛋白在 復制叉處和單鏈DNA結合后可以促進雙鏈的進一步打開,并保持其單鏈狀態有利于新生鏈的合成);它利用單鏈DNA為模板進,可同時利用它作為引物,即此單鏈DNA的3'端能環繞其本身的某一順序形成 氫鍵配對,3'端的未雜交部分即被T4DNA聚合酶的3'→5'外切酶活性切去,然后在其作用下從......閱讀全文
最近年來在枯草桿菌,鼠傷寒沙門氏桿菌等細胞及噬菌體T4、T5、T7中分離到DNA聚合酶,這里只介紹T4DNA聚合酶。T4DNA聚合酶與大腸桿菌DNA聚合酶Ⅰ相似,也是一條多肽鏈,分子量亦相近,但 氨基酸組成不同,它至少含有15個半胱氨酸殘基。但是,它在作用上與大腸桿菌DNApol不同;[1]它無
在50年代的中期,A. Kornberg和他的同事們就想到DNA的復制必然是一種酶的催化作用,于是決心分離出這種酶并研究其結構和作用機制。為了達到這個目的,他們分離的蛋白,然后加到體外合成系統中即 同位素標記的dNTP、Mg2+及模板DNA,經過大量的工作,于1956年終于發現了DNA聚合酶Ⅰ(
PCR技術是80年代中期發展起來的體外核酸擴增技術。 它具有特異、敏感、產率高、 快速、 簡便、重復性好、易自動化等突出優點。 PCR技術最早由美國Cetus公司人類遺傳研究室Kary Mullis及同事于1985年發現并研制成功的;最早的應用報道是Saiki等1985年將PCR技術應用
單、雙鏈DNA或RNA都可以作為PCR的樣品。若起始材料是RNA,須先通過逆轉錄得到第一條cDNA。雖然PCR可以僅用極微量的樣品,甚至是來自單一細胞的DNA,但為了保證反應的特異性,還應用ng級的克隆DNA,μg水平的單拷貝染色體DNA或104拷貝的待擴增片段作為起始材料,模板可以是粗品,但不
(一)引物的量 引物在PCR反應中的濃度一般在0.1~1μmol/L之間。濃度過高易形成引物二聚體且產生非特異性產物。一般來說用低濃度引物經濟、特異,但濃度過低,不足以完成30個循環的擴增反應,則會降低PCR的產率。 (二)TaqDNA聚合酶的量 典型PCR反應混合物中,所用酶濃度為2.5
真核生物的DNA聚合酶:真核生物中也具有幾種DNA聚合酶,但這些聚合酶都沒有3'→5'或5'→3'外切酶活性。其聚合反應機制與原核生物的聚合一樣。DNA聚合酶α主要負責合成引物,既能合成前導鏈的又能合成后隨鏈的,它與引發酶(primase)形成復合體,因其有引發、
在引物RNA'-OH末端,以dNTP為底物,按模板DNA上的指令由DNApolⅠ逐個將核苷酸加上去,就是DNApolⅠ的聚合作用。 酶的專一性主要表現為新進入的脫氧核苷酸必須與模板DNA配對時才有 催化作用。dNTP進入結合位點后,可能使酶的 構象發生變化,促進3'-OH與5
核酸檢測革命:可替代PCR的犀利技術——RPA重組酶聚合酶擴增(Recombinase Polymerase Amplification,RPA),被稱為是可以替代PCR的核酸檢測技術。RPA技術主要依賴于三種酶:能結合單鏈核酸(寡核苷酸引物)的重組酶、單鏈DNA結合蛋白(SSB)和鏈置換DNA
電子鼻又稱氣味掃描儀,是20 世紀90 年代發展起來的一種快速檢測食品的新穎儀器。它以特定的傳感器和模式識別系統快速提供被測樣品的整體信息,指示樣品的隱含特征。 電子鼻是模擬動物嗅覺器官開發出一種高科技產品,目前科學家還沒有全部搞清楚動物的嗅覺原理。但是隨著科技的發展,目前世界上較為權威
鐵架臺用于固定和支持各種儀器,鐵圈可代替漏斗架使用。一般常用于過濾、加熱、滴定等實驗操作。是物理、化學實驗中使用最廣泛的儀器之一。常與 酒精燈配合使用。 使用時要注意順序是“由下至上”。鐵架臺使用時要放在水平的桌面上,鐵夾要夾穩。 酸堿試劑滴到鐵架臺上時要立刻用水沖洗。