近日,美國猶他大學發現一種新型二維半導體材料一氧化錫。據了解,該材料可用于制備計算機處理器和圖形處理器等電子設備內的晶體管,有助于研制出運行速度更快、更加節約能源的智能手機和計算機等電子設備。 當前,電子設備內晶體管的玻璃基板由許多層三維材料構成,如硅材料。其弊端在于當電子通過時,會在所有層內不受控制地四處彈跳。而新發現的一氧化錫材料屬于二維半導體材料,玻璃基板只有一層,且間隙只有一兩個原子的厚度,電子只能在這一層中通過。因此,產生的摩擦更少,電子的移動速度變得更快。 二維半導體材料近5年成為科學研究熱點,盡管石墨烯、二硫化鉬等多種二維材料已被發現,但這些二維半導體材料只允許帶負電荷的電子通過,即N型半導體。而用于制造電子設備晶體管的半導體材料,既需要允許帶負電荷的電子通過,也需要帶正電荷的粒子通過,即P型半導體。最新發現的一氧化錫是有史以來第一種穩定的P型二維半導體材料。......閱讀全文
據美國猶他大學官網消息,該校工程師最新發現一種新型二維半導體材料一氧化錫(SnO),這種單層材料的厚度僅為一個原子大小,可用于制備電子設備內不可或缺的晶體管。研究人員表示,最新研究有助于科學家們研制出運行速度更快且能耗更低的計算機和包括智能手機在內的移動設備。 一氧化錫這個“小鮮肉”由猶他大學
物理與材料學領域 【1】2019年12月11日,中科院物理所張余洋、丁洪及高鴻鈞共同通訊在Science 在線發表題為“Nearly quantized conductance plateau of vortex zero mode in an iron-based superconducto
中國科學院科技戰略咨詢研究院戰略情報研究所研制的“2016全球最受公眾關注的科學成果”,通過計量統計遴選出天文學與天體物理[1]、物理學、化學、地球科學、生命科學這五個學科中受到科技界熱切關注的科學成果,及中國研究者參與的每個學科TOP30受公眾關注的科學成果,為科技工作者把握最新的科學研究熱點
盡管安全性一度遭到質疑,但基因編輯技術發展勢頭不可阻擋。 基因測試新技術 新概念造影劑“納米MRI燈” 巴西轉基因大豆 記錄DNA數據 具隱身效果的膜材料(模擬效果圖) 耐水性超薄太陽能電池 美 國 基因編輯技術火熱 干細胞研究獲突破 美科學家開展了該國首個對人類胚胎的基因編輯
在納米材料領域,美國國家標準與技術研究院的研究人員通過在納米尺度上采用一種獨特的三明治結構,開發出一種多壁碳納米管材料,其整體厚度還不到人類頭發直徑的百分之一,卻可以大幅降低泡沫制品的可燃性。國家直線加速器實驗室和斯坦福大學合作,首次揭示了石墨烯插層復合材料的超導機制,并發現一種潛在的工藝能使石
2019年即將結束,中國學者總共在Cell,Nature及Science發表了180項研究成果,其中生命科學領域有105篇,材料學有30篇,化學有12篇,地球科學有15篇,物理學有18篇。我們盤點一下材料學: 按雜志來劃分:Cell 發表了0篇,Nature 發表了11篇,Science 發表
基因編輯更快更準更簡單 1973年,斯坦利?N?科恩(Stanley N. Cohen)和赫伯特?W?博耶(Herbert W. Boyer)找到了改變生物體基因組的方法,成功將蛙的DNA插入到細菌中。20世紀70年代末,博耶的基因泰克(Genetech)公司對大腸桿菌進行基因改造,使其帶有一
多個類型的平面材料堆砌在一起,可能展現每個的最佳性能。圖片來源:H. Terrones et al 物理學家習慣使用他們所能想到的最好的詞語來形容石墨烯。這絲薄的單原子厚度的碳是靈活、透明的,比鋼強、比銅導電好,雖然非常
單層石墨烯(上)激發了科學家探索半導體單晶材料——如二維黑磷單晶(中)和二硫化鉬(下)——的熱情。 通常情況下,膠帶不會被看作是一種具有科學突破性的進展。但是當英國曼徹斯特大學物理學家安德烈·蓋姆(Andre Geim)和康斯坦丁·諾沃肖羅夫(Konstantin Novoselov)(兩人在
自20世紀60年代以來,電子電路上可容納的元器件數量每兩年便增加一倍,這種趨勢就是著名的摩爾定律。隨著晶體管越來越小,硅芯片上可容納的元器件數量在不斷增加。但目前看來,硅晶體管正接近它的物理極限。只有開發出全新類型的材料和設備,才能釋放下一代計算機的潛力。單分子厚晶體管芯片或許能用來驅動下一代計
不久前,中科院寧波材料所會同浙江工業技術研究院、中國石墨烯產業技術創新戰略聯盟、寧波市科技信息研究院等多家單位,撰寫完成了《2015石墨烯技術專利分析報告》并向社會公開發布。作為2015中國國際石墨烯創新大會的前奏,該報告分析了全球石墨烯技術的整體專利態勢和研發熱點,為石墨烯學術界和產業界指明
今日推薦文章作者為東南大學毫米波國家重點實驗室主任、IEEE Fellow 著名毫米波專家洪偉教授,本文選自《毫米波與太赫茲技術》,發表于《中國科學: 信息科學》2016 年第46卷第8 期——《信息科學與技術若干前沿問題評述專刊》,射頻百花潭配圖。引言隨著對電磁波譜的不斷探索, 人類對電子學和光學
有機電視、電子紙、有機照明、有機太陽能電池……對普通人而言,“有機電子學”的概念可能是陌生的,但其應用已經走進了人們的視野。據國際知名有機電子咨詢機構IDTechEx計算,有機電子器件在未來的20年里,有可能占據3000億美元的市場份額,成為一個龐大的商業領域。 在有機電子學中,有機場效應晶體
11月14日,國際著名期刊《Science》以“first release”形式刊發《超導-絕緣相變中的玻色金屬態》(Intermediate bosonic metallic state in the superconductor-insulator transition),電子科技大學電子薄
以往的研究表明,二維碳薄片石墨烯擁有一個通用的光吸收系數。而據物理學家組織網近日報道,現在,美國能源部勞倫斯伯克利國家實驗室的科學家首次證實,所有的二維半導體也同樣普遍適用于一個類似的簡單吸光規律。他們利用超薄半導體砷化銦薄膜進行的實驗發現,所有的二維半導體,包括受太陽能薄膜和光電器件行業青睞的
▲大面積石墨炔薄膜▲宏量制備高純度石墨炔▲二維碳石墨炔的結構模型 石墨炔是一種新的碳同素異形體,其豐富的碳化學鍵,大的共軛體系、寬面間距、優良的化學穩定性和半導體性能一直吸引著科學家的關注。隨著富勒烯、碳管及石墨烯等碳材料陸續通過物理方法成功制備,如何制備石墨炔一直是科學研究的焦點。
彈道是量子物理的概念,雪崩是半導體物理中的基本現象,兩者貌似無關。但南京大學電子科學與工程學院教授王肖沐/施毅課題組與該校物理學院教授繆峰課題組合作,讓二者“邂逅”,首次在二維材料垂直異質結中提出和實現了一種新型PN結擊穿機制——彈道雪崩。 基于傳統雪崩反向擊穿機制的光電探測器,是實現單光子探
二維層狀晶體材料,比如石墨烯和二硫化鉬(MoS2)等,具有優良的電學性能和光學性能,因此被期待可用來發展更薄、導電速度更快的新一代電子元件、晶體管和光電器件。近幾年來,平面內各向異性的二維晶體材料,如黑磷(BP),二硫化錸(ReS2)和二硒化錸(ReSe2)等,由于其具備的獨特性質和在納米器件方
美國佐治亞理工學院和中國科學院北京納米能源與系統研究所王中林院士領導的研究小組最近與美國哥倫比亞大學的James Hone研究組合作,首次在二維單原子層材料二硫化鉬中實驗觀測到壓電效應(piezoelectric effect)和壓電電子學效應(piezotronic effect),并首次成功
2018年10月20日,第二十屆全國分子光譜學學術會議暨2018年光譜年會開幕式暨40周年慶典在青島舉辦(相關報道:慶祝中國光譜40年 構建中國光譜新時代)。在第一天的大會報告之后(相關報道:古人學問無遺力 今有分子光譜百家鳴),組委會也安排了精彩分會報告。分析測試百科網作為合作媒體為您帶來拉曼
光波導,因其輕薄和外界光線的高穿透特性而被認為是消費級AR眼鏡的必選光學方案,又因其價格高和技術門檻高讓人望而卻步。隨著主流AR設備微軟HoloLens2、Magic Leap One等對光波導技術的采用和設備量產,以及AR光學模組廠商DigiLens、耐德佳、靈犀微光等近期融資消息的頻繁披露,
近日,中國科學技術大學合肥微尺度物質科學國家實驗室國際功能材料量子設計中心與中科院強耦合量子材料物理重點實驗室教授曾長淦研究組,成功制備強關聯體系單晶納米線和原子尺度的二維范德瓦爾斯異質結,并發現其物性被維度所顯著調控。相關結果發表在《納米快報》(Nano Lett.)和《自然-通訊》(Natu
新年將至,又到了年終盤點的時候。美國化學會(ACS)旗下的C&EN網站也端出了一席年終大餐:2015年化學領域最受矚目的研究成果。其實,在過去的這一年中一直關注X-MOL的讀者朋友也許會發現,其中絕大多數成果已經在X-MOL平臺報道過了。不過,我們覺得,在這節日的氣氛中,讓這一
今年3月,浙江大學利用石墨烯等材料制成世界“最輕材料”。 想在一秒鐘內下載一部高清電影嗎?石墨烯調制器的問世或許能讓這個愿望得以實現。 美國華裔科學家張翔教授的研究團隊用石墨烯研制出一款調制器,這個只有頭發絲四百分之一細的光學調制器具備的高速信號傳輸能力,有望將互聯網傳輸速度提高一萬倍。
自1800年William Herschel發現紅外輻射后,紅外探測逐漸成為現代光電技術領域的重要分支。以諾貝爾物理學獎獲得者Wilhelm Wien, Max Planck等人為代表的科學家們建立了遠場范疇的紅外物理學基礎(圖1)。基于人們對遠場紅外物理學的科學認識,紅外探測技術的發展經過了漫
2011年正值國際純粹與應用化學聯合會的前身國際化學會聯盟(IACS)成立100周年,也適逢居里夫人獲得諾貝爾化學獎100周年。為了紀念化學的成就及其對人類文明的貢獻,2008年,聯合國大會將2011定為“國際化學年”。 化學為我們創造了豐富多彩的世界,我們的日常生活幾乎沒有
中國科學技術大學潘建偉、陸朝陽等與華盛頓大學許曉棟、香港大學姚望合作,在國際上首次在類石墨烯單原子層半導體材料中發現非經典單光子發射,連接了量子光學和二維材料這兩個重要領域,打開了一條通往新型光量子器件的道路。該工作于5月5日在線發表在《自然·納米技術》上。同期的“新聞視角”欄目撰文評論該工作“
分析測試百科網訊 2016年10月29日,在第十九屆全國分子光譜學學術會議暨2016年光譜年會召開期間,會務組組織了拉曼光譜、紅外光譜、原子光譜分會場,讓各位到會學者進行交流學習。在“拉曼光譜及相關光譜技術的研究進展”分會現場人頭攢動,來自多個領域的拉曼光譜專家及相關廠商介紹了拉曼光譜的新技術、
“姜尚因命守時,立鉤釣渭水之魚,不用香餌之食,離水面三尺, 尚自言曰:‘負命者上鉤來!’” &nb
在中國科學院、科技部、國家自然科學基金委的大力支持下,化學研究所有機固體院重點實驗室相關研究人員在石墨烯的可控制備和性能研究方面取得系列進展,相關結果發表在PNAS、JACS (2篇)、Adv. Mater.(3篇),并應邀在Acc. Chem. Res.雜志上發表了述評。 石