7月20日,來自于加州大學圣迭戈分校、麻省理工學院的研究團隊在《Nature》期刊發表最新成果,展示了他們首次在細菌細胞內構件“基因回路”,并插入抗癌藥物合成基因,使其成為合成抗癌藥物的“工具”。最奇妙的在于,這些有著特殊使命的細菌們,能夠在腫瘤位置集體“自爆”釋放出抗癌藥物消滅癌細胞。 這一細菌薈萃了生物工程和生物學教授Jeff Hasty團隊研究多年的精華。圍繞這一設計理念他們曾先后在《Nature》期刊發表4篇相關文章。 這一特殊細菌的優勢在于,它能夠最大限度地降低藥物對周圍正常組織、細胞的傷害。 基因回路:限制細菌生長,實現集體自殺 考慮到傳統的化療并不總能精準地達到腫瘤的核心區域,而細菌卻可以做到,生物工程和生物學教授Jeff Hasty開始考慮利用細菌實現藥物的傳遞。但是,如何讓細菌精確控制藥物釋放的時間呢? 他帶領圣迭戈分校的研究團隊選取減毒性沙門氏菌腸亞種,利用合成生物學在細菌內構建了一個基因回路。......閱讀全文
10月份Science期刊又有哪些亮點研究值得學習呢?小編對此進行了整理,與各位分享。 1.Science:新研究揭示人類微生物組是潛力巨大的新型抗菌藥物聚寶盆 doi:10.1126/science.aax9176 就像淘金熱中的淘金者曾經在北加州的山上開采這種閃亮的貴金屬一樣,“生物勘
在過去二十年里,合成生物學家已經開發出復雜的基因電路來控制單個細胞的活動,但隨著時間的推移,這種系統不可避免地會由于導致失控突變的進化選擇壓力而失去功能。 現有解決方法包括將重組元件整合到宿主基因組中和使用質粒穩定元件,合成“殺傷開關”或合成氨基酸。雖然穩定元素可以延長作用時間,但是進化將不可
2018年5月份即將結束了,5月份Science期刊又有哪些亮點研究值得學習呢?小編對此進行了整理,與各位分享。 1.Science:腸道微生物組竟能控制肝臟中的抗腫瘤免疫反應 doi:10.1126/science.aan5931; doi:10.1126/science.aat8289
中國科學院科技戰略咨詢研究院戰略情報研究所研制的“2016全球最受公眾關注的科學成果”,通過計量統計遴選出天文學與天體物理[1]、物理學、化學、地球科學、生命科學這五個學科中受到科技界熱切關注的科學成果,及中國研究者參與的每個學科TOP30受公眾關注的科學成果,為科技工作者把握最新的科學研究熱點
豉汁蒸鳳爪端上桌后,一個小女孩頑皮地用筷子噠噠地敲打著餐桌。一位穿著Polo衫和牛仔褲的男士,正在和自己的小女兒、妻子和母親享用著廣式點心。在波士頓唐人街這個喧鬧的餐廳,沒人會多瞄一眼這位男青年。 沒人能猜到,34歲的張鋒會是這一代人中公認的最具轉化能力的生物學家,在不久的將來可能會在兩個領域
近年來,生命科學的蓬勃發展,使得人類不僅能夠更好地“認識生命”,甚至開始“設計生命”,充當新時代的“造物主”;在“上帝已死”的時代,人類自身開始扮演起近乎“上帝”的角色。 2010年,基因科學家溫特爾帶領他的團隊在實驗室合成了第一個人工合成細胞,命名為“辛西婭”,并稱它是第一種“以計算器為父母
7月份即將結束了,7月份Cell期刊又有哪些亮點研究值得學習呢?小編對此進行了整理,與各位分享。 1.Cell:中科院生物物理所王艷麗/章新政課題組從結構上揭示Cas13a切割RNA機制 doi:10.1016/j.cell.2017.06.050 作為一種VI-A型CRISPR-Cas系
合成生物學使得研究人員能夠編程細胞執行一些新功能,如響應一種特殊的化學物質發出熒光,或是響應疾病標記物生成藥物。現在麻省理工學院(MIT)的工程師們朝著設計出復雜得多的回路邁進了一步,編程細胞記住并對一系列的事件做出了響應。這項研究發布在7月22日的《科學》(Science)雜志上。 麻省理工
癌癥是引發全球人口死亡的主要原因,當細胞發生突變引發細胞失控增殖生長時就會發生癌癥,那么我們是否能夠設計出工程化改造的細胞來抵御癌癥發生呢? 合成生物學領域就是一個快速發展的學科,其能夠幫助科學家將新型的計算能力編碼到DNA中,電子回路是通過由諸如電阻器和二極管等組分組成,同樣地,合成生物學家
基因組編輯技術CRISPR/Cas9被《科學》雜志列為2013年年度十大科技進展之一,受到人們的高度重視。CRISPR是規律間隔性成簇短回文重復序列的簡稱,Cas是CRISPR相關蛋白的簡稱。CRISPR/Cas最初是在細菌體內發現的,是細菌用來識別和摧毀抗噬菌體和其他病原體入侵的防御系統。圖片
從進化的角度講,酵母與制作止痛劑可謂風馬牛不相及。但是通過對這種微生物的基因重新進行編輯,美國斯坦福大學科學家Christina Smolke使其精確地擁有了這一功能,Smolke團隊用糖作為一種原料,將酵母轉變成了一個“生物工廠”,生產出了有效的止痛劑氫可酮。 這是合成生物學的有名案例之一。
近年來,研究者們在腫瘤的預防與治療領域取得了突破性的進展,臨床上手術、放化療以及免疫療法的結合使用也大幅提高了患者的壽命以及生活質。然而,在很多情況下,腫瘤組織還是會出現較強的抗藥性,使得治療結果往往不佳。因此,進一步探究癌細胞的耐藥性的產生以及尋找針對性的治療方法是目前的研究熱點。本期為大家帶
活體動物體內光學成像(Optical in vivo Imaging)主要采用生物發光(bioluminescence)與熒光(fluorescence)兩種技術。生物發光是用熒光素酶(Luciferase)基因標記細胞或DNA,而熒光技術則采用熒光報告基團(GFP、RFP, Cyt及dyes等)進
1. NEJM:工程胰島細胞移植讓一名糖尿病患者恢復胰島素產生能力 1型糖尿病讓一名43歲的女性依賴于胰島素。如今,在一項新的研究中,醫生們通過將工程胰島細胞移植到她的腹部恢復了她的身體產生這種激素的能力。這名病人在接受移植一年后仍然保持胰島素不依賴性,而且根據一篇新聞稿的報道,她是測試這種糖
對于某些肥胖者而言,控制食欲或許能夠讓其變得苗條,提起食欲,我們或許會想到一桌子豐盛的大魚大肉會讓我們流口水、食欲大增;而控制機體食欲的信號通路卻是非常復雜的。 日前,一項刊登在eLife雜志上的一篇研究報告中,來自麻省理工大學的研究者就通過研究發現了一類特殊的神經膠質細胞,這些細胞或許能夠幫
定義 聚合酶鏈式反應簡稱PCR(英文全稱:Polymerase Chain Reaction), 聚合酶鏈式反應具體內容點擊: 聚合酶鏈式反應,簡稱PCR。聚合酶鏈式反應,其英文Polymease Chain Reaction(PCR)是體外酶促合成特異
時光總是匆匆而逝,12月份已經開始,2017年也已接近尾聲,迎接我們的將是嶄新的2018年,2017年三大國際著名雜志Cell、Nature和Science(CNS)依舊刊登了很多突破性耐人尋味的研究,本文中小編首先對2017年Science雜志發表的重磅級亮點研究進行盤點,分享給大家!與各位一
一、概述 前面已經介紹了核酸分子單鏈之間有互補的堿基順序,通過堿基對之間非共價鍵(主要是氫鍵)的形成即出現穩定的雙鏈區,這是核酸分子雜交的基礎。雜交分子的形成并不要求兩條單鏈的堿基順序完全互補,所以不同來源的核酸單鏈只要彼此之間有一定程度的互補順序(即某種程度的同源性)就可以形成雜交雙鏈。分子雜交
一、雜交通過堿基對之間非共價鍵(主要是氫鍵)的形成即出現穩定的雙鏈區,這是核酸分子雜交的基礎。雜交分子的形成并不要求兩條單鏈的堿基順序完全互補,所以不同來源的核酸單鏈只要彼此之間有一定程度的互補順序(即某種程度的同源性)就可以形成雜交雙鏈。分子雜交可在DNA與DNA、RNA與RNA或RNA與DNA的
一、概述 前面已經介紹了核酸分子單鏈之間有互補的堿基順序,通過堿基對之間非共價鍵(主要是氫鍵)的形成即出現穩定的雙鏈區,這是核酸分子雜交的基礎。雜交分子的形成并不要求兩條單鏈的堿基順序完全互補,所以不同來源的核酸單鏈只要彼此之間有一定程度的互補順序(即某種程度的同源性)就可以形成雜交雙鏈。分子雜交
PCR反應五要素:參加PCR反應的物質主要有五種即引物、酶、dNTP、模板和Mg2+引物: 引物是PCR特異性反應的關鍵,PCR 產物的特異性取決于引物與模板DNA互補的程度。理論上,只要知道任何一段模板DNA序列,就能按其設計互補的寡核苷酸鏈做引物,利用PCR就可將模板DNA在體外大量擴增。設計引
PCR反應體系與反應條件 標準的PCR反應體系: 10×擴增緩沖液 10ul 4種dNTP混合物 各200umol/L 引物 各10~1
PCR反應體系與反應條件 標準的PCR反應體系: 10×擴增緩沖液 10ul 4種dNTP混合物 各200umol/L 引物 各10~100pmol 模板
只要出現一篇關于CRISPR-Cas9的報道,Addgene的員工就會立刻找到它。這家非營利公司是論文作者經常儲存研究中使用的分子工具的地方,也是其他科學家立即獲取這些分子工具的地方,還是一些科學家可以即刻得到相關試劑的地方。“一篇熱門論文發表之后,我們幾分鐘后就會接到電話。”這家美國馬薩諸塞州
轉眼間12月份已經接近尾聲了,這個月又有哪些亮點研究值得我們深入學習一下呢?小編根據本月新聞的熱度、點擊量、研究領域篩選出了本月的重磅級研究Top10,供大家學習交流。 【1】Aging:不可思議!阿奇霉素竟能減緩細胞衰老延長機體壽命 doi:10.18632/aging.101633 近
維生素A(vitaminA)又稱視黃醇(其醛衍生物視黃醛)或抗干眼病因子,是一個具有脂環的不飽和一元醇,包括動物性食物來源的維生素A1、A2 兩種,是一類具有視黃醇生物活性的物質。 維生素A1多存于哺乳動物及咸水魚的肝臟中,維生素A2常存于淡水魚的肝臟中。由于維生素A2的活性比較低,所以通常所
核酸分子雜交技術由于核酸分子雜交的高度特異性及檢測方法的靈敏性,它已成為分子生物學中最常用的基本技術,被廣泛應用于基因克隆的篩選,酶切圖譜的制作,基因序列的定量和定性分析及基因突變的檢測等。其基本原理是具有一定同源性的原條核酸單鏈在一定的條件下(適宜的溫室度及離子強度等)可按堿基互補原成雙鏈。雜交的
細胞是構成人體的基本單位。一個成年人的細胞數量大約是10的13次方,而與人體共生的細菌比人體細胞還要多10倍,其中腸道菌群就包含了500-1000種不同的細菌。早在1886年,就有學者發現了大腸桿菌對消化有輔助作用。由此而展開的,對大腸桿菌、雙歧桿菌等常見腸道菌的發現和功能探索也開啟了早期人類對
基因編輯更快更準更簡單 1973年,斯坦利?N?科恩(Stanley N. Cohen)和赫伯特?W?博耶(Herbert W. Boyer)找到了改變生物體基因組的方法,成功將蛙的DNA插入到細菌中。20世紀70年代末,博耶的基因泰克(Genetech)公司對大腸桿菌進行基因改造,使其帶有一
河南日報退休高級編輯,大河健康報退休總編,河南農大兼職教授,中國新聞獎獲得者。 各位女士、各位先生: 大家好。大家都是經常來圖書館借書、看書的讀者,如今喜歡看書的人真是難能可貴。看年齡,大家多數是60后、50后,少數是70后、40后。大家可能都不是生物專業的大學生,但是大家在中學階段都學過化