<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • Antpedia LOGO WIKI資訊

    匡廷云院士團隊揭示硅藻特有捕光天線蛋白復合體結構

    硅藻是海洋中最“成功”的浮游光合生物之一,它們通過光合作用貢獻了地球上每年約20%的原初生產力,且在地球的元素循環和氣候變化中發揮重要作用,這與硅藻特有的捕光天線蛋白“巖藻黃素-葉綠素a/c蛋白復合體”(Fucoxanthin chlorophyll a/c protein,FCP)的功能密切相關。硅藻的FCP復合體具有出色的藍綠光捕獲能力和極強的光保護能力,這是硅藻能夠在海洋中繁盛的重要原因之一。三角褐指藻類囊體膜上的FCP二聚體晶體結構。a和b:FCP蛋白晶體;蛋白中的葉綠素a(綠色),葉綠素c(洋紅色)和巖藻黃素分子結構分別以棍狀圖顯示,藍色為硅甲藻黃素。 硅藻的FCP復合體屬于捕光天線蛋白復合體(Light harvesting complex,LHC)超級家族,但其氨基酸序列與高等植物和綠藻的葉綠素a/b捕光天線蛋白的同源性很低,而且最為突出的是FCP結合大量巖藻黃素和葉綠素c,能夠捕獲藍綠光以適應水下弱光環境。......閱讀全文

    植物“霸道總裁”的生存秘密

      俗話說,人是鐵,飯是鋼,一頓不吃餓得慌。對綠色植物來說,最不可缺少的“糧食”就是陽光。  光合作用是綠色植物、藻類和細菌等利用陽光進行的地球上規模最大、最為重要的化學反應。然而人類對于植物光合作用的秘密并未完全掌握。  日前,由中科院院士匡廷云和研究員沈建仁帶領的中國科學院植物研究所團隊在《科學

    隋森芳團隊等揭示硅藻光系統超級復合物冷凍電鏡結構

      硅藻是海洋主要的浮游生物之一,貢獻了地球上每年原初生產力的20%左右,且在生物地球化學循環中起著重要作用,這都與其光系統II(PhotosystemII,PSII)以及外周捕光天線的功能密切相關。不同于綠藻和高等植物,硅藻PSII的外周捕光天線是結合了巖藻黃素和葉綠素a/c的蛋白(Fucoxan

    在硅藻特有捕光天線蛋白復合體結構研究中取得突破

      硅藻是海洋中最“成功”的浮游光合生物之一,它們通過光合作用貢獻了地球上每年約20%的原初生產力,且在地球的元素循環和氣候變化中發揮重要作用,這與硅藻特有的捕光天線蛋白“巖藻黃素-葉綠素a/c蛋白復合體”(Fucoxanthin chlorophyll a/c protein,FCP)的功能密切相

    我國科學家揭秘硅藻為啥善捕光

      被稱為自然界“奇葩”光合物種的硅藻為什么特別擅長“捕光”?日前,中國科學院植物研究所沈建仁和匡廷云研究團隊的一項最新研究發現揭示出了硅藻的“秘密”——它有高效地捕獲和利用光能的獨特結構。國際知名學術期刊《科學》以長文形式在線發表了這一成果。基于該研究,科學家未來有望設計出可以高效“捕光”的新型作

    硅藻為啥擅長“捕光”?

      被稱為自然界“奇葩”光合物種的硅藻為什么特別擅長“捕光”?日前,中國科學院植物研究所沈建仁和匡廷云研究團隊一項最新研究發現揭示了硅藻的“秘密”——它有高效地捕獲和利用光能的獨特結構。國際知名學術期刊《科學》在線發表了這一成果。基于該研究,科學家未來有望設計出可以高效“捕光”的新型作物。  幾十億

    研究解析硅藻PSI-FCPI超級復合物2.38埃分辨率的三維結構

      硅藻是海洋中的主要浮游藻類之一,在地球碳氧等元素循環中起重要作用。硅藻含有巖藻黃素、葉綠素c、硅甲藻黃素等與綠色光合生物不同的光合色素,具有特殊的光能捕獲、能量傳遞和光保護機制。  中國科學院植物研究所光合膜蛋白結構生物學團隊致力于光合膜蛋白三維結構和功能的研究,2019年,破解羽紋綱硅藻-三角

    光合作用光能捕獲與能量傳遞的結構基礎研究

    光合作用作為地球上生物利用太陽能的重要反應,一直是科學研究關注的重點,是植物抗逆性研究、作物高產研究的熱點。光合作用根據其反應階段可以分為基于光能吸收傳遞轉化的光反應和基于CO2同化等酶促過程的暗反應。光反應作為植物利用太陽能的原初反應,光能的吸收傳遞和轉化主要發生在植物葉片或者藻類的類囊體膜上,由

    我國科學家在藻類捕光天線蛋白領域取得新進展

      硅藻貢獻了地球上每年原初生產力的20%左右,這都與其光系統II(PhotosystemII,PSII)以及外周捕光天線的功能密切相關。硅藻PSII的外周捕光天線結合了巖藻黃素和葉綠素a/c的蛋白(FucoxanthinChl a/c binding proteins,FCPs),具有強大的藍綠光

    隋森芳等揭示硅藻光系統II-捕光天線超級復合體結構

    硅藻是海洋主要的浮游生物之一,貢獻了地球上每年原初生產力的20%左右,且在生物地球化學循環中起著重要作用,這都與其光系統II(PhotosystemII,PSII)以及外周捕光天線的功能密切相關。不同于綠藻和高等植物,硅藻PSII的外周捕光天線是結合了巖藻黃素和葉綠素a/c的蛋白(Fucoxanth

    植物所等 綠藻光系統I超級復合物結構解析方面取得進展

      光合生物的光系統I(PSI)是一個極高效率的光能吸收和轉化系統,幾乎每一個吸收的光子都能產生一個電子,其量子轉化效率超過90%。因此PSI高效吸能、傳能和轉能的結構基礎受到科學家的廣泛關注。目前,原核生物藍藻、真核生物紅藻和高等植物PSI超級復合物結構都已被解析,然而綠藻PSI的高分辨率結構長期

    我國學者揭示硅藻FCP晶體結構及結構基礎

      硅藻是海洋中最“成功”的浮游光合生物之一,它們通過光合作用貢獻了地球上每年約20%的有機物生產力,相當于固定了近五分之一的二氧化碳,高于全球所有熱帶雨林的貢獻,這與硅藻特有的捕光天線蛋白“巖藻黃素-葉綠素a/c蛋白復合體”(Fucoxanthin chlorophyll a/c protein,

    2019年,中國“大農業”里那些高科技

       今年,我國“大農業”科研領域又誕生了諸多令人驚奇的發現,每一條都與我們息息相關。它們涵蓋了觀賞農業、林業、作物、醫學等各個領域,包括睡蓮、玉米、硅藻等進展。為了展現這些成就,本報特此就我國農業科學家今年發表的大部分重要論文進行梳理,以饗讀者。野生玉米大芻草、SK、現代玉米自交系ZHENG58的

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频