近日,中國科學院物理研究所/北京凝聚態物理國家研究中心的研究組發展出一套自動計算材料拓撲性質的新方法,在近4萬種材料中發現了8千余種拓撲材料,十幾倍于過去十幾年間人們找到的拓撲材料的總和,并據此建立了拓撲電子材料的在線數據庫。國際學術刊物《自然》在線發表了該成果【1】。 拓撲學是數學的重要分支,它的研究對象是在連續的形變下空間的不變性。比如,一個物體上面有多少洞(是指貫穿前后的洞,不是坑),這個洞的數目就是在連續形變下的一個不變量。因為具有相同的“洞數”(學名是“歐拉數”),一個有把兒的茶杯可以連續地變成一個游泳圈,而不可以連續地變成一個球。在上世紀80年代對量子霍爾效應態的研究中,人們認識到,就像幾何形體一樣,固體中電子的波函數也具有這樣的“拓撲不變量”,稱為“陳數”(因數學家陳省身得名);對于量子霍爾效應態而言,陳數直接對應了量子化的霍爾電導。由于電子的波函數生活在無窮維的希爾伯特空間,人們無法像歐拉數那樣直觀地去理......閱讀全文
拓撲物理學領域可能即將迎來它的爆發。2月28日凌晨,來自中科院物理所、南京大學和美國普林斯頓大學的3個研究組分別在《自然》雜志發布了最新相關研究成果。 他們的研究表明,數千種已知材料都可能具有拓撲性質,即自然界中大約24%的材料可能具有拓撲結構。 這個數字讓人震驚。因為在這之前,科學家知道
聲子是凝聚態物質中最常見的粒子之一,是晶格振動的能量量子化的體現,集體激發的準粒子,與材料的熱學、光學、電學和力學等基本物性密切相關。2017年前,從拓撲絕緣體,拓撲半金屬到拓撲超導,拓撲電子材料的研究引領了前沿,關于固體材料的拓撲聲子尚未研究。與其他體系的拓撲物性一樣,因拓撲性的保護聲子會在材
“脆弱拓撲”是一種新發現的量子現象,它可以讓材料獲得奇異且激動人心的性質。 材料中隱藏的數學越來越神奇了。物質的拓撲態(由于電子的“扭結”量子態所產生的奇異性質)從罕見的稀奇玩意變成了物理學最熱門的領域之一。現在,理論物理學家意識到拓撲無處不在,并將其認定為固態物質形態中最重要的一環。扭開一個
3.楊輝/李亦學/Lars M. Steinmetz等團隊建立新型脫靶檢測技術,基因編輯工具安全性評估或迎來新突破 CRISPR/Cas9是廣泛關注的新一代基因編輯工具,自從2012年被發明以來,它一直以其高效性和特異性備受世人的期待,然而值得注意的是,CRISPR/Cas9從問世以來,其脫靶風險
近日,中國科學技術大學合肥微尺度物質科學國家實驗室王征飛教授與美國猶他大學劉鋒教授,清華大學薛其坤院士、馬旭村研究員,中科院物理所周興江研究員合作,首次發現了鐵基高溫超導材料中的一種新型一維拓撲邊界態,該成果在線發表于《自然—材料》雜志。 自然界中至今還沒有發現拓撲超導材料,如何設計尋找拓撲超
中國科學技術大學合肥微尺度物質科學國家實驗室王征飛教授與美國猶他大學劉鋒教授,清華大學薛其坤院士、馬旭村研究員,中科院物理所周興江研究員合作,首次發現了鐵基高溫超導材料中的一種新型一維拓撲邊界態,該成果于7月4日在線發表于《自然—材料》。 超導材料與拓撲材料是近年來凝聚態物理研究的兩大熱點。理
拓撲絕緣體已成為材料研究領域中的“明星”,吸引著眾多科學家的目光,理論和實驗兩方面的研究工作進展都極為迅速。拓撲絕緣體是一種新奇的量子物態,具有絕緣體和導體雙重特性,通過引入超導序和鐵磁序,拓撲絕緣體可能在量子計算機和自旋電子學等領域有著潛在的廣泛應用。然而,要實現這些應用,首先
最近,中國科學院物理研究所/北京凝聚態物理國家實驗室(籌)姚裕貴研究組與美國橡樹嶺國家實驗室的肖笛、張振宇研究組等合作,成功預言了一類新的拓撲絕緣體。 拓撲絕緣體作為一種新奇的量子物態,自問世以來就受到了廣泛的關注。與普通絕緣體相比,拓撲絕緣體同時具有絕緣體和導體雙重性,即在塊
在過去的十年中,拓撲材料 -其中散裝材料中的電子帶拓撲結構導致強大的,非常規的表面狀態和電磁 -引起了很多關注。盡管已經通過實驗證實了幾種理論上提出的拓撲材料,但拓撲性質的廣泛實驗探索以及在現實裝置中的應用,受到缺乏拓撲材料的限制,其中來自平凡費米表面態的干擾被最小化。
近年來,越來越多的拓撲絕緣體和拓撲半金屬材料被預言、驗證和研究,推動了拓撲材料理論的不斷發展和完善。在對稱性指標理論和拓撲量子化學理論提出后,中國科學院物理研究所研究員方辰、方忠等確立了對稱性數據與拓撲不變量的關系,形成拓撲詞典,再與研究員翁紅明等合作,發展了高通量計算判別拓撲材料的方法,反過來
摘要: 【1】中國科學技術大學薛天,初寶進及馬薩諸塞大學醫學院Han Gang共同通訊在Cell在線發表題為“Mammalian Near-Infrared Image Vision through Injectable and Self-Powered Retinal Nanoantenna
中國科學院合肥物質科學研究院強磁場科學中心科研人員在拓撲超導單晶體研究中取得新進展。研究人員獲得高質量的SrxBi2Se3單晶體,這種材料表現出高達91.5%的超導體積比,且該材料在空氣中十分穩定。利用穩態強磁場實驗裝置對SrxBi2Se3單晶體進行了研究,研究人員發現該材料在10特斯拉到35特
拓撲絕緣體是近年來凝聚態物理的研究熱點之一。這類材料不同于傳統的“金屬”和“絕緣體”,其體內部為有能隙的絕緣態,其表面則是無能隙的金屬態。這種金屬表面態是由其內在電子結構拓撲性質決定的,受時間反演不變性的保護,因而受缺陷、雜質等外界影響較小。目前,理論上預言的拓撲絕緣體都是半導體材料,電子間的關
拓撲量子材料由于具有奇異的電子性質,在自旋電子學器件和量子計算等領域前景應用廣闊,受到人們關注。已知的拓撲量子材料包括拓撲絕緣體、Dirac半金屬、拓撲節線半金屬和外爾半金屬等材料體系。其中,本征的拓撲絕緣體具有拓撲非平庸的絕緣體態以及受時間反演對稱性保護的金屬表面態。目前,拓撲絕緣體的實驗證據
強磁場中心張昌錦課題組利用穩態強磁場實驗裝置的五號水冷磁體,在30特斯拉磁場強度和0.36K極低溫條件下進行了精密的數據測量,對近期發現的潛在的拓撲超導材料PdTe2的電子結構進行了研究,得到了完美的強磁場振蕩信號。該工作從磁性和電性兩個方面給出了該體系中占主導地位的單帶電子結構,這一結果對后期
2019年上半年很快就結束了,iNature盤點了中國學者在Cell,Nature及Science發表的成果,我們發現總共有86篇(截至2019年6月24日),具體介紹如下: 4-6月發表的文章 【1】2019年6月21日,西北工業大學王文,中科院昆明動物研究所/BGI 張國捷及丹麥哥本哈根
8月22日,記者從上海交通大學獲悉,該校物理與天文學院特別研究員王世勇與瑞士、德國、美國科學家合作,首次合成具有拓撲性質的石墨烯納米帶。相關成果近日發表于《自然》雜志。 在物理學中,拓撲是物質的一個基本屬性。拓撲材料具有傳統材料不具備的新穎物理性。比如,此類材料的導電邊緣由于受到材料本征的拓撲
最近十幾年,能帶的拓撲理論發展迅速。目前,人們已經發現了多種拓撲能帶結構,比如狄拉克錐(Dirac cone)、外爾錐(Weyl cone)以及狄拉克/外爾節線(Dirac/Weyl nodal line)。這類拓撲能帶結構會帶來奇特的物理現象,比如手性反常、超大磁阻等。然而,除了石墨烯早已被證
磁性量子材料的缺陷工程及其局域量子態自旋的調控,有望用于構筑未來實用化的自旋量子器件,是目前凝聚態物理研究的熱點領域之一。近年來,基于過渡金屬的籠目晶格(kagome lattice)化合物成為揭示和探索包括幾何阻挫、關聯效應和磁性以及量子電子態的拓撲行為等豐富物理學性質的新穎材料平臺。在這些近
記者25日從中科院合肥物質科學研究院了解到,該院強磁場科學中心科研人員近期研發出一種新型高質量單晶體。這種材料的超導性能高達91.5%,且在空氣中十分穩定,在10特斯拉到35特斯拉磁場區間出現了周期性的量子振蕩信號,證明其存在拓撲保護表面態。 拓撲超導態是物質的一種新狀態,拓撲超導體的表面存在
中國科學院半導體研究所常凱研究組提出利用表面極化電荷在傳統常見半導體材料GaAs/Ge中實現拓撲絕緣體相。通過第一性原理計算和多帶k.p理論成功地證明了GaAs/Ge極化電荷誘導的拓撲絕緣體相,這為拓撲絕緣體的器件應用又向前推進了一步。 拓撲絕緣體是目前凝聚態物理的前沿熱點問題之一。它具有
一塊碲化鉍石頭,普通人把它歸類為“固體”,但它的準確分類應該是“拓撲絕緣體”。“拓撲”二字一加,物質的存在方式極大豐富。10月4日,三位美國人因為“拓撲相變”研究被授予2016年度諾貝爾物理學獎。而中國科學家近幾年也在這一領域大放異彩。 “我讀著他們的文章開始了研究,對他們的工作非常敬佩,他們
外爾半金屬的費米面有且僅有孤立的能帶交叉點構成,因而其低能激發的準粒子可以用描述外爾費米子的外爾方程來刻畫,具有外爾費米子的零質量、確定手性等特征。雖然自由粒子形式的外爾費米子至今未能被實驗確認,但在外爾半金屬中卻能夠實現外爾費米子形式的準粒子,這為研究外爾費米子的行為提供了新途徑。固體中的外爾
根據《中國科學院杰出科技成就獎條例》(試行)的有關規定,經2011年中國科學院杰出科技成就獎評審委員會評審,確定2011年中國科學院杰出科技成就獎建議名單,現將有關建議名單予以公布,同時在中國科學院院網站公布。 自公布之日起1個月內為異議期。任何單位和個人對評審結果如有異議,應以書面
英國著名雜志《Nature》周刊是世界上最早的國際性科技期刊,自從1869年創刊以來,始終如一地報道和評論全球科技領域里最重要的突破。其辦刊宗旨是“將科學發現的重要結果介紹給公眾,讓公眾盡早知道全世界自然知識的每一分支中取得的所有進展”。近期《Nature》下載論文最多的十篇文章(2017年7月
尋找馬約拉納束縛態是當前凝聚態物理研究的熱點問題。馬約拉納束縛態是實現拓撲量子計算的基礎。近日,清華大學物理系李渭副教授、薛其坤教授的研究團隊與中科院上海硅酸鹽研究所的黃富強研究員及南京大學的張海軍教授合作,在一種新型的過渡金屬硫族化合物2M-WS2中發現了馬約拉納束縛態存在的證據,這是科學家首
拓撲物態和二維磁性是當前凝聚態物理前沿研究中令人著迷的兩大主題,兩者結合是否會產生新的量子物態成為人們關注的重要科學問題。最近,中國科學院大學教授蘇剛團隊與新加坡科技設計大學教授楊聲遠團隊合作回答了這一問題,他們首次提出了一種新的拓撲量子物態——“二維外爾半準金屬態(2D Weyl half-s
量子自旋液體是凝聚態物理學家追尋已久的新奇物質形態。它由諾貝爾獎得主P. W. Anderson在70年代首次提出,80年代末被用來嘗試解釋當時剛發現的高溫超導現象。傳統的物質形態可以用能帶理論和對稱性自發破缺理論來描述,而自旋液體作為沒有對稱性破缺的量子物質形態需要用新的理論框架來描述。這個新
近年來,量子材料的研究已經成為凝聚態物理領域的新熱點。量子材料通常具有非平凡的拓撲特性。磁性斯格明子(skyrmion)材料是一類具有納米尺度的拓撲自旋渦旋結構的量子材料。因其具有拓撲及超低電流密度驅動等特性,在基礎理論研究及器件化商業應用研究等領域得到了廣泛關注。磁性雙斯格明子(biskyrm
最近,中國科學技術大學微尺度物質科學國家實驗室和化學與材料科學學院教授曾杰研究組在拓撲絕緣體二維層狀納米材料Bi2Se3的結構設計、合成與生長機理研究方面取得新進展。研究人員對Bi2Se3晶體的成核及生長進行了動力學調控,通過引入螺旋位錯首次實現了二維層狀材料的螺旋生長,將材料由分立的層狀轉變成