<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>

  • 我國學者在二維納米材料光致透明特性研究取得多項進展

    近期,上海光機所中科院強激光材料重點實驗室王俊研究員課題組在二維納米材料光致透明特性研究方面取得多項進展。 電磁誘導透明可以在原子系統中通過光線調控窗口透明度,在全光處理和量子信息處理領域具有重要應用價值。同時,光致透明也是一種非常重要的非線性光學效應,特別是在開發光調制器、全光開關等光子學器件方面具有很大的應用潛力。但關于過渡金屬硫化物、黑磷等重要二維納米材料光致透明特性的研究還鮮有報道,這在一定程度上限制了基于該類材料的器件開發。 研究小組利用液相剝離技術制備了MoS2、MoSe2、Graphene等多種二維納米材料懸浮液,并觀察到了光致透明和消光現象。研究發現通過飽和吸收和非線性散射機制共同作用,632.8 nm連續探測光可以被532 nm納秒泵浦激光有效調制成峰(光致透明)和谷(光致消光)。科研人員系統研究了不同泵浦條件下的光調制特性,最大調制深度可達7 dB。這項工作可幫助開發基于二維半導體的光調制、全光開關應......閱讀全文

    蘇州納米所光致形變納米復合智能材料研究取得進展

      光致形變材料是一種在特定波長光(紫外、可見光等)的照射下,材料本體發生形變(伸縮、彎曲)現象的智能材料,具有遠程、非接觸、多選擇性的控制方式,可望在光敏開關、光學傳感器、光驅動馬達以及其他將光能直接轉變為動能等高效利用光能領域獲得應用。相比于含偶氮苯光致形變高分子材料,具有光致異構化特性的有機染

    我國學者在二維納米材料光致透明特性研究取得多項進展

      近期,上海光機所中科院強激光材料重點實驗室王俊研究員課題組在二維納米材料光致透明特性研究方面取得多項進展。  電磁誘導透明可以在原子系統中通過光線調控窗口透明度,在全光處理和量子信息處理領域具有重要應用價值。同時,光致透明也是一種非常重要的非線性光學效應,特別是在開發光調制器、全光開關等光子學器

    蘇州納米所新型納米復合光致變形智能材料研究獲進展

      光致變形材料是一種在光波的照射下,材料本體發生變形(伸縮、彎曲)現象的新型智能材料,它能實現光能到機械能的直接轉化,而無需通過齒輪等機械傳送裝置的轉換,具有遠程的、無接觸、無損傷、易操控等特點,在仿生機器人、生物醫學器件、微流控、太陽帆等領域具有重要的應用前景。因而發展高性能的光致變形材料具有重

    透明材料有望讓手機變“迷你光伏電站”

       日前,密歇根大學的一個研究團隊稱他們已經研發出一種透明的“冷光太陽能收集器” (Luminescent Solar Concentrator)模塊。團隊成員,密歇根大學工程學院的Richard Lunt表示:“這種材料可以被用在具有大面積玻璃墻面的高層建筑物,或手機、電子書這類移動設備上。”他

    新型透明電極材料助推有機光伏技術走向市場

    近日,東華大學先進低維材料中心特聘研究員唐正課題組展示了一種全新溶液法制備的透明導電薄膜材料,明確了薄膜的導電機制,并使用該薄膜材料作有機光伏器件的陰極,實現了器件的“免氧化銦錫(ITO) ”發展,為促進有機光伏技術的市場化發展提供了新思路。相關研究成果已發表于《自然—通訊》。 有機光伏器件的透

    新型納米發光材料有望用于腫瘤光動力治療

       日前,中國科學院遺傳與發育生物學研究所研究員降雨強研究組與北京大學基礎醫學院教授沙印林課題組合作,設計合成了一種新型納米發光材料,基于該類金納米簇的雙光子動力療法具有空間選擇性高,安全、高效,不需要避光期等優點,在腫瘤治療尤其是腦膠質瘤、實體瘤治療方面具有很好的臨床轉化前景。相關研究成果已申請

    激光(微/納米)粒度儀在材料領域的應用

    由于帶同種電荷的顆粒的雙電層相互重疊而使顆粒間產生的相互排斥作用是油/水乳液體系保持穩定的重要因素。當使用離子乳化劑時,側面的雙電層排斥作用可以防止封閉薄膜的形成。通過使用混合離子加非離子薄膜或者提高電解質濃度使薄膜擴張的影響降到最低。既然乳化液的穩定在一定程度上與界面的動電條件有關,那么小液滴的電

    法開發出操控光散射新方法-或讓不透明材料變透明

      所有物體的顏色取決于光在其表面發生的散射方式。通過操控光散射,控制從物體穿過和反射的光的波長,就能改變它們的外觀。據物理學家組織網近日報道,最近,法國科學家開發出一種操控光散射的新方法。按他們的理論,在大量相互作用的量子發射器中會產生復雜的雙極—雙極耦合作用,由此會使一些不透明材料變得透明。相關

    福建物構所光致形變晶體材料研究取得進展

      能量輸入誘導做功是一個廣泛研究的重要科學問題。面對日益嚴重的環境污染,如何有效利用可再生能源來實現能量到功的轉化激發了科學家對新興能量轉換材料研究的興趣。光誘導形變材料由于具有遠程、快速以及空間可探測的特點,能有效地將光能轉化為機械能,從而在光做功領域具有重要的潛在應用。目前為止,雖有為數不多的

    激光粒度儀在納米材料粒度檢測中的應用

    ? ? ? 一、納米材料  納米級結構材料簡稱為納米材料,廣義上是指三維空間中至少有一維處于納米尺度范圍超精細顆粒材料的總稱。根據2011年10月18日歐盟委員會通過的定義,納米材料是一種由基本顆粒組成的粉狀或團塊狀天然或人工材料,這一基本顆粒的一個或多個三維尺寸在1納米至100納米之間,并且這一基

    AFM納米材料與粉體材料的分析

    ?納米材料與粉體材料的分析在材料科學中,無論無機材料或有機材料,在研究中都有要研究文獻,材料是晶態還是非晶態。分子或原子的存在狀態中間化物及各種相的變化,以便找出結構與性質之間的規律。在這些研究中AFM?可以使研究者,從分子或原子水平直接觀察晶體或非晶體的形貌、缺陷、空位能、聚集能及各種力的相互作用

    蘇州納米所在薄膜光伏界面材料研究中取得進展

      有機薄膜電池因具有高效、低成本、輕柔、可采用全溶液法制備等優點,引起了國內外研究學者的廣泛關注。目前電池的光電轉換效率取得了巨大發展,展現出產業化的開發前景。要實現有機光伏的產業化和商業化,必須發展低成本、連續卷軸印刷工藝。對于印刷薄膜光伏而言,可印刷界面材料是實現高效印刷光伏的關鍵材料之一。 

    新型納米發光材料有助于于腫瘤光動力治療

      日前,中國科學院遺傳與發育生物學研究所研究員降雨強研究組與北京大學基礎醫學院教授沙印林課題組合作,設計合成了一種新型納米發光材料,基于該類金納米簇的雙光子動力療法具有空間選擇性高,安全、高效,不需要避光期等優點,在腫瘤治療尤其是腦膠質瘤、實體瘤治療方面具有很好的臨床轉化前景。相關研究成果已申請發

    蘇州納米所在離子感應致動智能材料研究方面取得進展

      離子聚合物-金屬復合材料(Ionic polymer-metal composites, IPMC)是一種由金屬電極和離子聚合物構成三明治結構的離子感應電致動智能材料,因致動電壓低、變形大、柔性、可控性好等特點,使其成為輕質仿生系統首選,具有重要科學研究意義和應用價值。由于其致動機制主要源自

    納米服裝,真的有納米材料嗎?

    越來越多的高科技已經進入到我們日常生活之中,比如納米服裝。將納米級的微粒覆蓋在纖維表面或鑲嵌在纖維甚至分子間隙間,利用納米微粒表面積大、表面能高等特點,在物質表面形成一個均勻的、厚度極薄的(肉眼觀察不到、手摸感覺不到)、間隙極小(小于100nm)的‘氣霧狀’保護層。使得常溫下尺寸遠遠大于100nm的

    納米材料技術會議舉行

      6月17~20日,第三屆納米材料與納米技術會議在捷克舉行,14個國家的200多位專家學者交流了納米技術在建筑材料中的應用情況,來自北京化工大學、清華大學的專家也介紹了相關研究成果。   捷克奧斯特拉瓦納米技術研究中心開發的納米復合材料在新型建材中的應用引起了廣泛關注。他們采用納米級的二氧化鈦對

    納米材料的粒度分析

    ? ? 大部分固體材料均是由各種形狀不同的顆粒構造而成,因此,細微顆粒材料的形狀和大小對材料結構和性能具有重要的影響。尤其對于納米材料,其顆粒大小和形狀對材料的性能起著決定性的作用。因此,對納米材料的顆粒大小、形狀的表征和控制具有重要的意義。一般固體材料顆粒大小可以用顆粒粒度概念來描述。但由于顆粒形

    納米材料行業發展策略

      中國納米材料在國際上的競爭力與國際先進國家仍存在著較大差距。基礎研究和應用開發研究的脫節現象也沒得到很好解決,結合新產品研發的產學研創新機制,在運行和實施方面還存在一些問題,這就使中國的納米材料產業缺乏可持續的技術創新支撐。針對我國納米材料行業存在的問題,前瞻需提出科學的發展策略。   長遠來

    納米材料的粒度分析

    1. 粒度分析的概念????大部分固體材料均是由各種形狀不同的顆粒構造而成,因此,細微顆粒材料的形狀和大小對材料結構和性能具有重要的影響。尤其對于納米材料,其顆粒大小和形狀對材料的性能起著決定性的作用。因此,對納米材料的顆粒大小、形狀的表征和控制具有重要的意義。一般固體材料顆粒大小可以用顆粒粒度概念

    永磁材料與超磁致伸縮材料的應用價值

      稀土永磁材料是將釤、釹混合稀土金屬與過渡金屬(如鈷、鐵等)組成的合金,用粉末冶金方法壓型燒結,經磁場充磁后制得的一種磁性材料。稀土永磁分釤鈷(SmCo)永磁體和釹鐵硼(NdFeB)系永磁體,其中SmCo磁體的磁能積在15~30MGOe之間,NdFeB系永磁體的磁能積在27~50MGOe之間,被稱

    永磁材料與超磁致伸縮材料的應用價值

      稀土永磁材料是將釤、釹混合稀土金屬與過渡金屬(如鈷、鐵等)組成的合金,用粉末冶金方法壓型燒結,經磁場充磁后制得的一種磁性材料。稀土永磁分釤鈷(SmCo)永磁體和釹鐵硼(NdFeB)系永磁體,其中SmCo磁體的磁能積在15~30MGOe之間,NdFeB系永磁體的磁能積在27~50MGOe之間,被稱

    日本開發出透明強磁性薄膜材料

       日本研究人員開發出一種透明強磁性薄膜材料,今后有望用于研發在汽車、飛機的擋風玻璃上直接顯示油量、地圖等信息的新一代透明磁性設備。  日本電磁材料研究所和東北大學等機構研究人員日前在英國《科學報告》雜志上報告說,這種新材料被稱為納米顆粒材料,由納米級磁性金屬顆粒鐵鈷合金和絕緣物質氟化鋁混合制成。

    動態光散射納米激光粒度儀

      隨著現代科技的快速發展,傳統的粒度儀已經無法滿足測量顆粒分布的需求。而動態光散射納米激光粒度儀由于采用光電倍增管將這些脈動的散射信號接收并轉換成電信號,可按數字相關器處理識別動態光散信號,可用于顆粒分布測量工作。  簡介  隨著現代科技的快速發展,傳統的粒度儀已經無法滿足測量顆粒分布的需求。而動

    關于鋰電池負極材料納米材料的介紹

      納米材料是指在三維空間中至少有一維處于納米尺寸(1-100 nm)或由它們作為基本單元構成的材料,這大約相當于10~1000個原子緊密排列在一起的尺度。  "納米復合聚氨酯合成革材料的功能化"和"納米材料在真空絕熱板材中的應用"2項合作項目取得較大進展。具有負離子釋放功能且釋放量可達2000以上

    關于鋰電池負極材料納米材料的簡介

      納米顆粒材料又稱為超微顆粒材料,由納米粒子(nano particle)組成。納米粒子也叫超微顆粒,一般是指尺寸在1~100nm間的粒子,是處在原子簇和宏觀物體交界的過渡區域,從通常的關于微觀和宏觀的觀點看,這樣的系統既非典型的微觀系統亦非典型的宏觀系統,是一種典型的介觀系統,它具有表面效應、小

    新型石墨烯基材料大幅提高光致熱催化凈化VOCs效率

      現代工業化和城市化快速發展,資源特別是能源消耗持續增長的同時,區域性大氣污染問題越發突出。揮發性有機污染物(volatile organic compounds,VOCs) 是大氣環境污染物的重要組成部分,對人類生存和健康影響巨大,它的控制排放、治理污染不容忽視。本團隊致力于環境功能材料的研發及

    蘭州化物所納米多孔結構光陽極材料研究獲系列進展

      光電催化分解水制氫可實現太陽能到化學能的轉化,是獲得清潔能源的一個重要途徑。如何發展具有高效太陽能光電催化性能的半導體光陽極材料是實現太陽能清潔應用的關鍵問題。納米多孔半導體材料因其較高的比表面積、良好的光吸收等優異性能,在太陽能光電催化研究領域備受關注,然而納米多孔材料的光吸收及其光電催化作用

    新材料“吃進”低能光“吐出”高能光

    原文地址:http://news.sciencenet.cn/htmlnews/2023/6/502814.shtm美國得克薩斯大學奧斯汀分校研究人員領銜的團隊創造了一種新型材料,可吸收低能量光并將其轉化為高能量光。這種新材料由超小硅納米粒子和有機分子組成,能有效地在其有機和無機成分之間移動電子,可

    新材料“吃進”低能光“吐出”高能光

    美國得克薩斯大學奧斯汀分校研究人員領銜的團隊創造了一種新型材料,可吸收低能量光并將其轉化為高能量光。這種新材料由超小硅納米粒子和有機分子組成,能有效地在其有機和無機成分之間移動電子,可用于更高效的太陽能電池板、更精確的醫學成像和更好的夜視鏡。研究成果發表在最新一期《自然·化學》雜志上。新型材料將有機

    寧波材料所納米硅基負極材料研究取得進展

      相對于傳統石墨負極材料(372mAh/g),硅負極材料具有極高的理論比容量(3580mAh/g),是未來高能量密度動力鋰離子電池負極材料首選。但硅負極材料在充放電循環過程中存在體積變化(高達3倍以上),造成硅顆粒粉化,從而引發SEI膜反復再生庫倫效率低,電接觸變差極化增大,使實際硅負極材料循環壽

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频