手性向列膠體中可重構的打結和連接(2011 Science文章)對高聚物,大分子或者復雜材料中的缺陷線的打結或構建微尺度環是材料科學中富有挑戰性的任務。通過使用激光鑷作為一個顯微操控工具,將手性向列液晶膠體中的微觀拓撲缺陷線進行了任意復雜程度的打結和連接。所展示的所有結和連接包括霍普夫連接,大衛之星, 博羅梅安環都具有高達6個交叉, 并將膠體微粒穩定在不尋常的軟物質中。手性向列膠體中的結按照自連接的數量,幾何學的直接測量或Berry相進行分類。在手性向列膠體中構建任意微觀尺度結和連接展示了軟物質材料工程中拓撲學的重要性。Fig. 1.手性向列膠體中拓撲缺陷線的打結和連接 (A) 一個扭曲的缺陷環拓撲學上等效于解結并自發的環繞著一個單獨的小球。該單元的頂部和底部的分子取向與正交偏光鏡的方向相同。 (B to E) 膠體二聚體,三聚體,四聚體缺陷環被等效解開。 (F) 使用兩個內連接缺陷環編織出第一個不尋常的霍普夫連......閱讀全文
手性向列膠體中可重構的打結和連接(2011 Science文章)對高聚物,大分子或者復雜材料中的缺陷線的打結或構建微尺度環是材料科學中富有挑戰性的任務。通過使用激光鑷作為一個顯微操控工具,將手性向列液晶膠體中的微觀拓撲缺陷線進行了任意復雜程度的打結和連接。所展示的所有結和連接包括霍普夫連接,大衛之星
光鑷是一項正在飛速發展的技術,近年來,圍繞光鑷的新型應用層出不窮。光鑷是用高度聚焦的激光束的焦點捕獲粒子,從而使研究人員無需任何物理接觸即可操縱物體的技術。目前,光鑷已被用于捕獲微米級的物體,然而研究人員日益渴望將光鑷的應用擴展到納米級粒子上去。由法國雷恩第一大學Janine Emile和Oli
最近,小編被我司的工程師小姐姐安利了一部據說是英國最長壽的科幻劇《神秘博士》(Doctor Who)。在2018年底剛剛回歸的十一季中,新上任的第十三任Doctor造出了一件亮眼的神器——升級版音速起子,可謂是上可打外星人,下可開防盜門,有點無所不能的意思。 十三姨和她的起子而在咱們現實的物理學
德國科學家發現了肺黏液中特殊的凝膠結構,揭示了肺黏液阻止納米粒子通過的原因。該研究加深了對呼吸系統疾病,尤其是感染的理解,將有助于吸入式新藥的開發。相關成果發表于美國《國家科學院學報》上。 通常被稱之為“痰”的黏液黏附在人體呼吸系統氣道的內表面。這種黏性凝膠滋潤肺部并防止小顆粒的滲入,如病
來自中國科技大學,上海交通大學的研究人員發表了題為“Trapping red blood cells in living animals using optical tweezers”的文章,利用一種新型技術,捕獲并操縱了活體小鼠中皮下毛細血管內的紅細胞,從而拓展了動物活細胞動力學研究的
最新發現與創新 中國科學技術大學光學與光學工程系李銀妹課題組,近日與上海交通大學魏勛斌教授合作,采用活體動物內的細胞,發展了動物體內細胞三維光學捕獲技術。日前,國際著名學術期刊《自然·通訊》在線發表了這項研究成果,網站還以《醫學研究:用光清除血管被堵塞的血管》為題對該研究工作進行報道。
上個世紀90年代起,隨著納米科技走進人們的視線,宏觀世界中的器件走向微納世界成為世界潮流。微型馬達由于能廣泛應用于微機電、微流、生物醫藥等領域而倍受青睞,而光場、電場和磁場常常作為動力來智能地操控微型馬達。傳統的光驅動的旋轉微馬達可以通過向具有雙折射性質的物體傳遞角動量或向形狀不對稱的物體傳遞動
激光共聚焦拉曼光鑷顯微鏡(BioRam?)基于拉曼散射和光阱捕獲原理,創新地將共聚焦拉曼顯微技術與光鑷技術集成于一體,采用同一波長(785nm)的激光用于細胞的光阱捕獲和拉曼信號激發,即可捕獲細胞(即使是溶液中的懸浮細胞)的拉曼信號,又可對單細胞進行移動,實現細胞篩選。不同于常用的細胞分析方法,Bi
檢測優勢單細胞水平檢測和分析無需標記無侵入破壞無需大量樣品 (100 到500個細胞即可)廣泛適應性(貼壁細胞、懸浮細胞、組織切片、3D組織)等集成光鑷(實現溶液中懸浮細胞/顆粒的分析)
近日,深圳大學光電工程學院微納光學研究所袁小聰教授課題組在表面等離激元光鑷操控金屬納米線方面研究取得了新進展。袁小聰教授和閔長俊副教授在國際納米科學技術領域權威刊物《Nano Letters》(2014年該刊影響因子為12.94)發表了題為《Plasmonic Hybridization Ind