Most RNA isolation techniques currently in use have been developed for the processing of large quantities of material. These typically involve multiple phenol extractions (Reinert et al. 1981 Mol. Cell Biol. 1:829-836) or guanadinium isothio-cyanate/cesium chloride gradients (Chirgwin et al. 1979 Biochem 18:5294-5299) and can be both expensive and time consuming. Often, however, needs arise where quantitatively smaller amounts of RNA are needed from many different samples, for example, during time series analyses or when screening transfor-mants for expression of a transformed gene. Under such circumstances, existing tech-niques are overly time consuming and yield more RNA than is necessary. The availability of a rapid RNA mini-prep is thus desirable. Such a system has been developed for isola-ting plant RNA (Nagy et al. 1988 Plant Molecular Biology Manual, B4; ed. Gelvin and Schilperoort, Klewer Academic Publishing, pp. 1-29), and we have adapted this procedure for use with Neurospora and, potentially, other filamentous fungi. Below, we describe the use of this procedure with 50 ml mycelial cultures, although we have used in with equal success with 5 ml cultures without scaling down the amounts of any reagents.
The method involves the use of a triphenylmethane dye, aurintricarboxylic (ATA), to protect the RNA. ATA binds irreversibly to RNA and is a potent inhibitor of most nucleic acid binding enzymes (Hallick et al. 1977 Nucl. Acids Res. 4:3055-3064). Thus, RNA made with procedure cannot be used for in vitro transcription or translation or reverse transcription but works fine for RNA/DNA or RNA/RNA hybridizations.
To minimize RNase contamination, all glassware is baked at 182°C for at minimum of four hours. Work with gloved hands. The procedure is as follows:
1. Conidia from slants (grown in 16 x 150 mm test tubes containing 8 ml of solid medium) are resuspended in 50 ml of Horowitz complete medium (Horowitz 1947 J. Biol. Chem. 171:255-262) and the cultures grown overnight with shaking at 30°C. A 50 ml culture typically yields enough RNA for 200 gel lanes (see below), and, as noted, smaller culture volumes may be used.
2. Flat mycelial pads are easier to grind than mycelial balls. Therefore, filter cultures using a Buchner funnel onto Whatman #44 filter paper. Wrap flat mycelial pads in aluminum foil and freeze in dry ice. Do not freeze in EtOH/dry ice bath because alcohol might seep through foil. Pads can be stored at -70°C for at least three weeks.
3. Wash a mortar and pestle thoroughly with warm water and Alconox (Fisher Scientific); cool by filling with liquid N2. Remove frozen, flat mycelia from foil and add it to the liquid N2 in mortar. Add ~0.5 g of baked sand and grind mycelial pad to a fine powder. Add more N2 as needed. Mortar and pestle should be washed after every sample.
4. Working quickly before powder can thaw, pour or spoon ground mycelia into 15 ml round bottom Sarstedt tube (Sarstedt tubes #60.540, Princeton, NJ) containing 8 ml of E buffer at room temperature. [E buffer: 50 mM Tris-Cl pH 8.0, 300 mM NaCl, 5 mM EDTA, pH 8.0, 2 SDS; autoclave and add 1 mM ATA and 14 mM ?-mercaptoethanol. ATA=aurintricarboxylic acid, ammonium salt (Sigma #A0885, St. Louis, MO)]
5. Thaw the powder in E buffer in 42°C water bath, occasionally shaking, to get SDS into solution. This should take about 5 minutes.
6. Add 1.1 ml of 3M KCl, invert to mix, keep on ice for 10 min. Solution should form semi-solid, flocculent mass as K-SDS precipitate forms.
7. Spin at 3000g, 4°C in a fixed angle rotor. Make sure caps are screwed on tightly to prevent tubes from collapsing.
8. Pass supernatant through 50 micron Miracloth (Calbiochem #475855, La Jolla, CA) in a funnel into fresh Sarstedt tube.
9. Measure volume of average-sized sample. Add 0.5 vol. 8 M LiCl, mix and stand at 4°C overnight.
10. Spin at 12000g, 4°C, for 15 min in a fixed angle rotor. Thoroughly resuspend pellet in 4 ml sterile gd (glass distilled) H2O with pasteur pipette.
11. Extract twice with phenol/chloroform/isoamyl alcohol (25:24:1), spinning 12000g 10 min at 4°C in a fixed angle rotor. Save aqueous (upper) phase; add gd H2O if volume is less than 2 ml.
12. Add 0.1 vol 3M NaOAc pH 6.0, mix and add 2.5 vol EtOH, mix. Place at -20°C overnight or -70°C for 15 min.
13. Spin 12000g, 10 min, 4°C. Wash pellet with 70 EtOH and drain. Pellet should be a light pink or white.
14. Resuspend in 0.4 ml sterile gd H2O in a microfuge tube. Precipitate with NaOAc and EtOH as in step 12.
15. Spin 10-20 min in microfuge. Wash twice with 70 EtOH and dry pellet. Resuspend in 200 μl of sterile RNase-free gd H2O. Store at -70°C for up to three months. Spectophotometric quantification may be done at this point.
16. Load 1 μl onto a formaldehyde gel. Electrophorese overnight at 20 volts. Blot onto nitrocellulose. Probe with DNA fragment of choice. Expose to film.
Yields are typically on the order of 1-2 mg total RNA from an overnight 50 ml culture arising from an average slant. The number of samples able to be processed using this procedure is limited by the number of spaces in a centrifuge rotor. We have done as many as 24 samples in one day, and doing several times this many would be possible. We have observed on ethidium bromide stained gels that the fluorescence from the RNA deriving from this miniprep is brighter than that seen when the corresponding amount of standard-prep RNA is used. This may be due to enhanced fluorescence of RNA in the presence of ATA. However, autoradiography of the blots does not show any RNA degradation products (Figure 1). This procedure would probably work fine with other methods of tissue disruption. ATA inhibits many nucleic acid binding proteins, possibly by competing for binding sites (Blumenthal and Landers 1973. BBRC 55:680-688). Therefore, the most critical factor is getting the RNA in contact with ATA before nucleases can bind to the nucleic acid and degrade it. Supported by federal grants to J.J.L. and J.C.D.
Fig. 1. ATA mini-prep RNA probed with ccg-1 DNA fragment. Total RNA from a series of transformants into bd A and frq7 A was examined for the presence of the ccg-1 gene transcript (Loros et al. 1989 Science 243:385-388). Each lane contains 10 μg of RNA (1/200 of the preparation). While the fluorescence staining of the RNA extended from the 26S to below the 17S RNA bands (not shown), the hybridization revealed the presence of only a single undegraded transcript in each lane containing transformant RNA and no hybridization to the monkey cos cell RNA control.
RNA表觀遺傳學為基因表達調控提供了一個新的切入點,以RNAm6A甲基化修飾為代表開辟了RNA表觀遺傳的研究新方向。首個m6A去甲基化酶FTO的發現證實了m6A修飾的動態可逆性,成為推動m6A領域發展......
美國圣母大學發明的突破性設備采用了一種創新的方法來“監聽”細胞的對話。未來,這項技術將幫助改善癌癥和其他疾病的診斷。相關論文發表在新一期《納米》雜志上。科學家早就知道,RNA在細胞內扮演信使的角色,翻......
基因組工程可能是醫學的未來,但它依賴于數十億年前在原始細菌中取得的進化進步,而原始細菌是最初的基因編輯大師。科學家們對這些古老的基因編輯系統進行改造,推動它們完成更加復雜的基因編輯任務。然而,要發現新......
真菌感染會對人類、動物和植物構成威脅,甚至帶來嚴重后果。來自德國杜塞爾多夫海因里希-海涅大學(HHU)等機構的科學家,在一項最新研究中,闡明了真菌感染的一個重要分子機制。這一研究有望促進新型抗真菌藥物......
一種稱為中體殘余物的小細胞氣泡,曾被認為是細胞的“垃圾桶”,但實際上,中體殘余泡也能裝載有效遺傳物質,具有改變其他細胞命運的能力,甚至包括將其變成癌細胞。據發表在最新一期《發育細胞》雜志上的研究,美法......
導讀北京時間10月2日,匈牙利出生的生物化學家KatalinKarikó(卡塔琳·卡里科)和美國免疫學家DrewWeissman(德魯·魏斯曼)因為他們的研究成果,導致了兩個最重要的COVID-19疫......
近日,浙江大學生命科學研究院馮新華、蔣超、任艾明、楊兵實驗室在美國微生物協會(AmericanSocietyforMicrobiology)旗下的期刊mSystems雜志上合作發表了題為“High-s......
據發表在最新一期《自然·生物技術》雜志上的新研究,美國研究人員開發了一種人工智能模型,可預測RNA靶向CRISPR工具的脫靶活性。該模型可精確地設計向導RNA并調節基因表達,這些精確的基因控制可用于開......
日前,OrbitalTherapeutics 公司宣布完成了令人驚訝的2.7億美元A輪融資,用于RNA工具和下一代RNA藥物的研發,同時還引入了兩位新高管——NiruSubramanian和......
默沙東正在深入研究RNA藥物制造,周二宣布與生物技術初創公司OrnaTherapeutics達成一項交易,希望能夠開發出多種新藥和疫苗。通過這筆交易,默沙東將先向Orna支付1.5億美元預付款,并將在......