鐵基超導體電子向列相中的自旋關聯與量子漲落獲進展
因對稱性破缺而出現的有序電子態是凝聚態物理研究中俯拾皆是的基本現象。類比于液晶中的向列相,物理學家提出在關聯電子材料中同樣可能存在類似的“電子向列相”,即由于電子相互作用,系統呈現出打破晶格固有的旋轉對稱性的電子態。在鐵基超導材料中,隨著溫度的降低,其母體大多將經歷從四重對稱的四方相到二重對稱的正交相的結構相變,并隨后發生從順磁態到共線型反鐵磁態的磁性相變。通過引入摻雜或壓力,結構相變和反鐵磁相變會逐漸被壓制,超導隨之出現,并且在結構和磁相變消失的臨界點附近達到最高的超導轉變溫度。目前,許多實驗研究揭示了鐵基超導體中電子態性質(如電阻、紅外光譜、軌道能級、楊氏模量等)有著顯著的鐵砷/鐵硒面內二重對稱特征,甚至持續到四重對稱的高溫四方相中,表明結構相變是由電子自由度而非晶格自由度驅動的,來源于旋轉對稱破缺的電子向列相。然而,向列型電子態相變的驅動力是軌道還是自旋自由度,仍有很大爭議,向列型電子態漲落與超導電性是否存在直接關聯也......閱讀全文
美首次觀察到超導體中重電子形成過程
在某些超導體中,運動電子的性質極為奇特。它們好像比真空中的自由電子重1000倍,但同時電子運動卻是毫無阻力的。據物理學家組織網近日報道,美國普林斯頓大學領導的一項最新研究顯示,產生這種現象是由于“量子糾纏”的過程,該過程決定了晶體中運動電子的質量。這一發現有助于人們理解超導性的成因,并有望在提高
超導體簡介
超導體(英文名:superconductor),又稱為超導材料,指在某一溫度下,電阻為零的導體。在實驗中,若導體電阻的測量值低于10-25Ω,可以認為電阻為零。 超導體不僅具有零電阻的特性,另一個重要特征是完全抗磁性。 人類最初發現超導體是在1911年,這一年荷蘭科學家海克·卡末林·昂內斯(
中國科大在籠目超導體的競爭電子序研究獲進展
中國科學院院士、中國科學技術大學合肥微尺度物質科學國家研究中心、物理學院、中科院強耦合量子材料物理重點實驗室教授陳仙輝團隊教授吳濤等,在籠目超導體(kagomesuperconductor)的競爭電子序研究中取得重要進展。利用高壓下的核磁共振技術,科研團隊在籠目超導體CsV3Sb5中觀察到一種由
物理所預測非常規高溫超導體的電子結構基因
到目前為止,科學家發現了兩類著名的非常規高溫超導體——銅基和鐵基超導體。這兩類超導體都是在實驗中偶然發現的。對它們的超導機理的研究是凝聚態物理最具挑戰性的前沿工作。 中國科學院物理研究所/北京凝聚態國家實驗室(籌)研究員胡江平的研究組總結了過去一系列研究工作,提出要統一解釋這兩類超導
超導體是什么
問題一:超導體是什么 超導體最重要的特點是電流通過時電阻為零,有一些類型的金屬(特別是鈦、釩、鉻、鐵、鎳),當將其置于特別低的溫度下時,電流通過時的電阻就為零。在普通的導體中,大部分通過導體的電流由于電阻的原因變為熱能,因而被“消耗”掉了。川超導體中,實際上沒有阻力,這樣,一旦接通電流,從理論上講就
單層FeSe超導體電子結構和超導電性研究獲進展
發現新的具有更高超導轉變溫度的超導材料和理解高溫超導電性的產生機理是當今超導研究的兩個重要方向。2008年發現的鐵基超導體,其最高超導溫度達到55K。最近,清華大學物理系薛其坤研究組和中科院物理研究所的馬旭村研究組合作,在SrTiO3襯底上成功生長出了FeSe薄膜,并在單層FeSe薄膜
贗能隙會“搶走”高溫超導體中的電子-減弱其超導性
美國科學家發現了物質的神秘狀態贗能隙與高溫超導性相互競爭的首個直接證據:贗能隙“搶走”了高溫超導體中的電子——這些電子本來可以配對并以百分之百的效率讓電流通過超導材料。這項研究由斯坦福大學和美國能源部斯坦福直線加速器中心的科研人員主導,研究結果近日發表在《自然·材料》中。 上世紀90年代中期,
中國學者在籠目超導體中發現新型電子向列相
中國科學技術大學陳仙輝、吳濤和王震宇等組成的團隊,近日在籠目超導體CsV3Sb5中發現一種新型電子向列相。該發現不僅為理解籠目結構超導體中電荷密度波與超導電性之間的反常競爭提供了重要實驗證據,也為進一步研究關聯電子體系中與非常規超導電性密切相關的交織序提供了新的研究方向。相關成果2月10日以“加
籠目超導體CsTi3Bi5中的多重非平庸電子結構
二維籠目(kagome)晶格體系材料由于獨特的晶體構型和擁有平帶、范霍夫奇點和狄拉克錐等特殊的電子結構,為研究超導、電子關聯以及拓撲及其相互作用提供了理想平臺。其中,籠目超導體AV3Sb5 (A=K, Rb和Cs)因新穎的電荷密度波序、向列相序以及展現出的反常霍爾效應和可能的非常規超導電性等,激
鐵基超導體電子向列相中的自旋關聯與量子漲落獲進展
因對稱性破缺而出現的有序電子態是凝聚態物理研究中俯拾皆是的基本現象。類比于液晶中的向列相,物理學家提出在關聯電子材料中同樣可能存在類似的“電子向列相”,即由于電子相互作用,系統呈現出打破晶格固有的旋轉對稱性的電子態。在鐵基超導材料中,隨著溫度的降低,其母體大多將經歷從四重對稱的四方相到二重對稱的
科學家利用高次諧波光譜解鎖高壓超導體的電子結構
高壓為凝聚態物質創造了很多新奇物態,揭示了新的物理和化學現象。其中,在高壓氫化物如H3S和LaH10中發現的近室溫超導(Tc?> 200 K)引起了科學家的關注。高壓超導體的超導轉變溫度不斷升高,但因缺乏有效的探測手段,高壓量子態中電子結構和超快動力學行為未知,其超導機制仍是懸而未決的問題。高次諧波
界面超導體系與拓撲半金屬體系表面電子聲子相互作用
電子-聲子相互作用在凝聚態物理中極為重要,不僅與材料的熱力學、載流子動力學等宏觀物理性質密切相關,還在超導電子配對、電荷密度波的形成等微觀物理現象中起到重要作用。 中國科學院物理研究所/北京凝聚態物理國家研究中心表面物理國家重點實驗室SF06組研究員郭建東、副研究員朱學濤和博士生曹彥偉(已畢業
超導體與單層FeSe薄膜超導電性的共同電子結構起源
鐵基超導體作為繼銅氧化物超導體之后的第二類高溫超導體,其超導機理是凝聚態物理研究的重要課題。絕大多數鐵基超導體具有位于布里淵區中心的空穴型費米面和位于布里淵區頂角的電子型費米面。一種普遍的超導機理(費米面“嵌套”)認為,電子在電子型與空穴型費米面之間的散射,是鐵基超導體中電子配對和超導電性產生的
鐵基高溫超導體電子結構與超導能隙研究取得新進展
2008年發現的鐵基超導體其超導轉變溫度最高可達55K,是繼1986年發現的銅氧化物高溫超導體之后發現的第二類新的高溫超導體系。它的發現,為高溫超導電性的研究開辟了一個新的方向。與銅氧化物高溫超導體的研究類似,鐵基超導體研究的核心問題是理解其高溫超導電性產生的機理。對材料電子結構
超導體的用途簡介
超導磁體可用于制作交流超導發電機、磁流體發電機和超導輸電線路等。目前超導量子干涉儀(SQUID)已經產業化。 另外,作為低溫超導材料的主要代表NbTi合金和Nb3Sn,在商業領域主要應用于醫學領域的MRI(核磁共振成像儀)。作為科學研究領域,已經應用于歐洲的大型項目LHC項目,幫助人類尋求宇宙的
超導體的背景簡介
超導體的發現與低溫研究密不可分。在18世紀,由于低溫技術的限制,人們認為存在不能被液化的“永久氣體”,如氫氣、氦氣等。1898年,英國物理學家杜瓦制得液氫。1908年,荷蘭萊頓大學萊頓低溫實驗室的卡末林·昂內斯教授成功將最后一種“永久氣體”——氦氣液化,并通過降低液氦蒸汽壓的方法,獲得1.15~
鐵基超導體簡介
自從2006年發現鐵基超導體以來,對鐵基超導體日趨深入,比較突出的成果有:2008年,日本科學家細野秀雄發現摻雜F的LaFeOP超導體具有26K的臨界溫度;2008年,中國科學家趙忠賢、陳仙輝、王楠林、聞海虎、方忠發現臨界溫度達43K的SmFeAs1-xFx超導體和臨界溫度達55K的ReFeAs
超導體的強電應用
超導發電機:目前,超導發電機有兩種含義。一種含義是將普通發電機的銅繞組換成超導體繞組,以提高電流密度和磁場強度,具有發電容量大、體積小、重量輕、電抗小、效率高的優勢。另一種含義是指超導磁流體發電機,磁流體發電機具有效率高、發電容量大等優點,但傳統磁體在發電過程中會產生很大的損耗,而超導磁體自身損
超導體的臨界參數
超導體具有三個臨界參數:臨界轉變溫度Tc、臨界磁場強度Hc、臨界電流密度Jc。當超導體同時處于三個臨界條件內時,才顯示出超導性。 (1)臨界轉變溫度Tc:當溫度低于臨界轉變溫度Tc時,材料處于超導態;超過臨界轉變溫度Tc,超導體由超導態恢復為正常狀態。 (2)臨界磁場強度Hc:當外界磁場強度
銅氧超導體簡介
銅氧超導體是最早發現的高溫超導體,20世紀八十年代繆勒、柏諾茲合成的鋇-鑭-銅-氧系高溫超導體和朱經武、趙忠賢合成的釔-鋇-銅-氧系高溫超導體均屬于此范疇。 銅氧超導體包括90K的稀土系,110K的鉍系,125K的鉈系,135K的汞系超導體。它們都含有銅和氧,因此稱為銅氧超導體。銅氧超導體具有
室溫超導體“突破”遭質疑
原文地址:http://news.sciencenet.cn/htmlnews/2023/7/505564.shtm LK-99材料有一個邊緣呈懸浮狀態。圖片來源:Hyun-Tak Kim et al. (2023)一個研究小組聲稱已經創造出第一種在室溫和環境壓力下完美導電的材料,但許多物理
簡介超導體的弱電應用
超導計算機:高速計算機要求集成電路芯片上的元件和連接線密集排列,但密集排列的電路在工作時會發生大量的熱,而散熱是超大規模集成電路面臨的難題。超導計算機中的超大規模集成電路,其元件間的互連線用接近零電阻和超微發熱的超導器件來制作,不存在散熱問題,同時計算機的運算速度大大提高。此外,科學家正研究用半
超導體的研究和特性
因為超導體擁有零電阻的物質,所以可以有完美的導電性。當它處在外加磁場中,會對磁場產生的微弱排斥力,這種現象稱為邁斯納效應或者完美的抗磁性。超導磁鐵在核磁共振成像機中用作電磁鐵。超導現象是在1911年發現,在往后的時間只知部分金屬和合金在絕對溫標30度之下擁有這種特性。直到1986年,在一些陶瓷的氧化
超導體的抗磁性應用
超導磁懸浮列車:利用超導材料的抗磁性,將超導材料放在一塊永久磁體的上方,由于磁體的磁力線不能穿過超導體,磁體和超導體之間會產生排斥力,使超導體懸浮在磁體上方。利用這種磁懸浮效應可以制作高速超導磁懸浮列車。 核聚變反應堆“磁封閉體”:核聚變反應時,內部溫度高達1億~2億攝氏度,沒有任何常規材料可
硼化鎂超導體的概述
2001年1月,日本青山學院大學J.Akimitsu教授等人首次發現MgB2具有超導電性,其臨界溫度約為39K。 雖然MgB2的臨界溫度較低,但與銅氧超導體、鐵基超導體相比,仍有很多優勢,包括:結構簡單、易于制備;原料來源廣泛、成本較低;易于加工。尤其是易于加工的特性,成為MgB2的重要優勢。
室溫超導體“突破”遭質疑
LK-99材料有一個邊緣呈懸浮狀態 一個研究小組聲稱已經創造出第一種在室溫和環境壓力下完美導電的材料,但許多物理學家對此持高度懷疑態度。美國威廉與瑪麗學院的Hyun-Tak Kim表示,他將支持任何試圖復制其團隊工作的人。 超導體是一種可以使電流在沒有任何阻力的情況下移動的材料,因此可以顯著降低
簡述超導體的分類方法
超導體的分類方法有以下幾種: (1)根據材料對于磁場的響應:第一類超導體和第二類超導體。從宏觀物理性能上看,第一類超導體只存在單一的臨界磁場強度;第二類超導體有兩個臨界磁場強度值,在兩個臨界值之間,材料允許部分磁場穿透材料。從理論上看,如上文“理論解釋”中的GL理論所言,參數κ是劃分兩類超導體
簡介超導體的BCS理論
BCS理論是以近自由電子模型為基礎,以弱電子-聲子相互作用為前提建立的理論。理論的提出者是巴丁(J.Bardeen)、庫珀(L.V.Cooper)、施里弗(J.R.Schrieffer)。 BCS理論認為,金屬中自旋和動量相反的電子可以配對形成庫珀對,庫珀對在晶格當中可以無損耗的運動,形成超導
超導體的三大特性
超導體的三大特性是完全導電性,完全抗磁性,通量量子化。這三大特性使得超導體非常的受關注,而且運用的空間很大。但是目前人們對超導體的研究還不是很成熟,很多方面都有一定的技術難題。比如超導體對溫度的要求很高,達不到一定的溫度,就不能表現出超導體完全導電的特性;超導體對磁場的要求也非常高,只有達到這個磁場
物理所銅氧化合高溫超導體中絕緣超導體轉變研究獲進展
銅氧化物高溫超導體的母體是反鐵磁莫特絕緣體, 高溫超導電性的產生通過摻雜適當數量的載流子得以實現。介于母體和超導體之間,存在一個特殊而重要的過渡區,即所謂的重欠摻雜區域。在這個特定的區域, 少量的載流子摻雜使得三維反鐵磁長程序被迅速壓制,并且發生絕緣體-金屬/超導體轉變。這個區域的電子結