<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>

  • 簡介超導體的BCS理論

    BCS理論是以近自由電子模型為基礎,以弱電子-聲子相互作用為前提建立的理論。理論的提出者是巴丁(J.Bardeen)、庫珀(L.V.Cooper)、施里弗(J.R.Schrieffer)。 BCS理論認為,金屬中自旋和動量相反的電子可以配對形成庫珀對,庫珀對在晶格當中可以無損耗的運動,形成超導電流。對于庫珀對產生的原因,BCS理論做出了如下解釋:電子在晶格中移動時會吸引鄰近格點上的正電荷,導致格點的局部畸變,形成一個局域的高正電荷區。這個局域的高正電荷區會吸引自旋相反的電子,和原來的電子以一定的結合能相結合配對。在很低的溫度下,這個結合能可能高于晶格原子振動的能量,這樣,電子對將不會和晶格發生能量交換,沒有電阻,形成超導電流。 BCS理論很好地從微觀上解釋了第一類超導體存在的原因,理論的提出者巴丁、庫珀、施里弗因此獲得1972年諾貝爾物理學獎。但BCS理論無法解釋第二類超導體存在的原因,尤其是根據BCS理論得出的麥克米蘭......閱讀全文

    簡介超導體的BCS理論

      BCS理論是以近自由電子模型為基礎,以弱電子-聲子相互作用為前提建立的理論。理論的提出者是巴丁(J.Bardeen)、庫珀(L.V.Cooper)、施里弗(J.R.Schrieffer)。  BCS理論認為,金屬中自旋和動量相反的電子可以配對形成庫珀對,庫珀對在晶格當中可以無損耗的運動,形成超導

    超導體:傳統BCS理論與高溫超導理論

      超導是一種物理現象,指某些材料在低溫下電阻突然消失,呈現出零電阻和完全抗磁性的特征。超導最早是在1911年由荷蘭科學家昂內斯發現的,當時他將汞冷卻到4.2K時,發現其電阻降為零。后來人們又陸續發現了許多其他的超導材料,如鉛、錫、鈮等。  超導有兩個重要的特點:零電阻和完全抗磁性。零電阻意味著超導

    低溫超導和高溫超導如何區別?

    超導材料從超導溫度上可以分為兩大類,一類是40K以下的,即低溫(常規)超導材料,40K以上的叫做高溫超導材料。  一般來說,把臨界溫度高于40K的超導體稱為高溫超導體,而把臨界溫度高于300K左右的超導體稱為室溫超導。也就是說,在超導界,“室溫”其實是要比“高溫”高得多的。至于為什么高溫超導體的分界

    簡述超導體的分類方法

      超導體的分類方法有以下幾種:  (1)根據材料對于磁場的響應:第一類超導體和第二類超導體。從宏觀物理性能上看,第一類超導體只存在單一的臨界磁場強度;第二類超導體有兩個臨界磁場強度值,在兩個臨界值之間,材料允許部分磁場穿透材料。從理論上看,如上文“理論解釋”中的GL理論所言,參數κ是劃分兩類超導體

    超導體簡介

      超導體(英文名:superconductor),又稱為超導材料,指在某一溫度下,電阻為零的導體。在實驗中,若導體電阻的測量值低于10-25Ω,可以認為電阻為零。  超導體不僅具有零電阻的特性,另一個重要特征是完全抗磁性。  人類最初發現超導體是在1911年,這一年荷蘭科學家海克·卡末林·昂內斯(

    超導體的用途簡介

      超導磁體可用于制作交流超導發電機、磁流體發電機和超導輸電線路等。目前超導量子干涉儀(SQUID)已經產業化。 另外,作為低溫超導材料的主要代表NbTi合金和Nb3Sn,在商業領域主要應用于醫學領域的MRI(核磁共振成像儀)。作為科學研究領域,已經應用于歐洲的大型項目LHC項目,幫助人類尋求宇宙的

    超導體的背景簡介

      超導體的發現與低溫研究密不可分。在18世紀,由于低溫技術的限制,人們認為存在不能被液化的“永久氣體”,如氫氣、氦氣等。1898年,英國物理學家杜瓦制得液氫。1908年,荷蘭萊頓大學萊頓低溫實驗室的卡末林·昂內斯教授成功將最后一種“永久氣體”——氦氣液化,并通過降低液氦蒸汽壓的方法,獲得1.15~

    簡介超導體的弱電應用

      超導計算機:高速計算機要求集成電路芯片上的元件和連接線密集排列,但密集排列的電路在工作時會發生大量的熱,而散熱是超大規模集成電路面臨的難題。超導計算機中的超大規模集成電路,其元件間的互連線用接近零電阻和超微發熱的超導器件來制作,不存在散熱問題,同時計算機的運算速度大大提高。此外,科學家正研究用半

    鐵基超導體簡介

      自從2006年發現鐵基超導體以來,對鐵基超導體日趨深入,比較突出的成果有:2008年,日本科學家細野秀雄發現摻雜F的LaFeOP超導體具有26K的臨界溫度;2008年,中國科學家趙忠賢、陳仙輝、王楠林、聞海虎、方忠發現臨界溫度達43K的SmFeAs1-xFx超導體和臨界溫度達55K的ReFeAs

    銅氧超導體簡介

      銅氧超導體是最早發現的高溫超導體,20世紀八十年代繆勒、柏諾茲合成的鋇-鑭-銅-氧系高溫超導體和朱經武、趙忠賢合成的釔-鋇-銅-氧系高溫超導體均屬于此范疇。  銅氧超導體包括90K的稀土系,110K的鉍系,125K的鉈系,135K的汞系超導體。它們都含有銅和氧,因此稱為銅氧超導體。銅氧超導體具有

    科學家開辟通向奇異超導新途徑

    據最新一期《物理評論快報》報道,美國埃默里大學物理學家確定了一種被稱為對密度波的振蕩超導電性形成機制,為人們對某些材料(包括高溫超導體)中出現的非常規高溫超導狀態提供了新見解。  研究人員表示,范霍夫奇點結構可產生超導的調制、振蕩狀態,新研究為理解這種行為的出現提供了一個新的理論框架。  1911年

    超導體的完全抗磁性簡介

      完全抗磁性又稱邁斯納效應,“抗磁性”指在磁場強度低于臨界值的情況下,磁力線無法穿過超導體,超導體內部磁場為零的現象,“完全”指降低溫度達到超導態、施加磁場兩項操作的順序可以顛倒。完全抗磁性的原因是,超導體表面能夠產生一個無損耗的抗磁超導電流,這一電流產生的磁場,抵消了超導體內部的磁場。  超導體

    ?價鍵理論簡介

    價鍵理論valence-bond theory,一種獲得分子薛定諤方程近似解的處理方法。又稱電子配對法。歷史上最早發展起來的化學鍵理論。其核心思想是原子間相互接近軌道重疊,原子間共用自旋相反的電子對使能量降低而成鍵。

    細胞“膜泵理論”的簡介

    細胞“膜泵理論”,是用來解釋細胞內外離子分布梯度這個事實的理論。而且它也是解釋植物的根毛細胞何以對土壤中的離子有選擇性吸收的基礎理論。如果“膜泵理論”成立,那就意味著有多少種可被植物利用的離子,就要有多少種泵!膜泵理論成立的另一個論據就是,泵會‘中毒’,中毒的泵不能工作,但也可以解毒。膜泵理論的建立

    控制理論基礎簡介

    任何一個閉環系統都可以等效成如下模型:其中H為主拓撲或者主設備傳函,K是輸出采樣比例,C為補償環節傳函。依據此模型我們可以得出如下方程:求解此方程就可以得出:對于補償環節C,我們經常放一個積分環節。對于這種情況,靜態增益或者直流增益是無窮大的,從而:因此對于直流成分,輸出便等效成如下方程:我們可以得

    中國科大在有機超導體研究領域取得重要突破

      近日,中國科學技術大學微尺度國家實驗室陳仙輝教授課題組在堿金屬摻雜菲中發現了5開爾文溫度的超導電性,這是有機超導體領域的重要突破。相關成果以Superconductivity at 5K in alkali-metal-doped phenanthrene為題,刊登在10月18日

    軟硬酸堿理論的簡介和應用

    軟硬酸堿理論簡稱HSAB(Hard-Soft-Acid-Base)理論,是一種嘗試解釋酸堿反應及其性質的現代理論。它目前在化學研究中得到了廣泛的應用,其中最重要的莫過于對配合物穩定性的判別和其反應機理的解釋。軟硬酸堿理論的基礎是酸堿電子論,即以電子對得失作為判定酸、堿的標準。

    氧化還原反應的理論發展簡介

      18世紀末,化學家在總結許多物質與氧的反應后,發現這類反應具有一些相似特征,提出了氧化還原反應的概念:與氧化合的反應,稱為氧化反應;從含氧化合物中奪取氧的反應,稱為還原反應。隨著化學的發展,人們發現許多反應與經典定義上的氧化還原反應有類似特征,19世紀發展化合價的概念后,化合價升高的一類反應并入

    超導發展中的那些大事

    超導學是研究在低溫下電阻消失的物質性質的領域。以下是超導發展史的一些重要階段:1.發現初期(1911-1950s):  1911年,荷蘭萊頓大學的卡末林·昂內斯(Heike Kamerlingh Onnes)首先發現超導體。在溫度降低到4K(4 degrees Kelvin, -452F, -269

    超導體中的電流有什么特點

    超導體最重要的特點是電流通過時電阻為零,有一些類型的金屬(特別是鈦、釩、鉻、鐵、鎳),當將其置于特別低的溫度下時,電流通過時的電阻就為零。在普通的導體中,大部分通過導體的電流由于電阻的原因變為熱能,因而被“消耗”掉了。在超導體中,實際上沒有阻力,這樣,一旦接通電流,從理論上講就永遠不會中斷。在一個用

    物理所鐵基超導材料拓撲性質研究取得進展

      鐵基超導體和拓撲絕緣體是近年來凝聚態物理研究的熱點問題。鐵基超導體是非常規超導體,不同于傳統的電聲耦合機制的BCS超導體,其超導配對機制的解釋仍然是凝聚態物理理論的一個難點;同時,不同于單帶的銅基非常規超導體,鐵基超導體的多帶特性使其具有更豐富的電子結構。拓撲絕緣體的發現突破了人們對絕緣相的認識

    理論預測的“惡魔”粒子首次現身

      理論預測67年后,美國和日本的科學家首次在釕酸鍶內部發現了名為“惡魔”的粒子。這一發現或可解釋為什么某些材料是超導體,并有助科學家尋找新的超導材料。相關論文發表于9日出版的《自然》雜志。  該粒子是一種等離子體激元,產生于名為等離子體的帶電粒子。當電子從原子中自由“漂浮”出來時,就會形成等離子體

    碳納米管膜形成超流體的過程介紹

    于量子液體低于某臨界轉變溫度會形成超流態。比如氦最豐富的同位素,氦-4,在低于 2.17 K(?270.98°C) 時便會變成超流體。氦-4形成超流態的相變稱為Lambda相變(Lambda transition),因它的比熱容對溫度曲線形狀如同希臘字母“λ”一樣。凝聚態物理學中一些相近的相變亦因而

    20世紀中前期超導體的發展簡介

      1911年,荷蘭科學家卡末林—昂內斯用液氦冷卻汞,當溫度下降到4.2K(﹣268.95℃)時,汞的電阻完全消失,卡末林將這種現象稱為超導電性。卡末林因此獲得1913年諾貝爾獎。  1933年,邁斯納和奧克森菲爾德兩位科學家發現超導體的完全抗磁性,后人稱之為“邁斯納效應”。  從1954年3月16

    物理所合作研究取得對唯一尖晶石氧化物超導體的最新認識

      LiTi2O4(LTO)是迄今發現的唯一具有尖晶石結構的氧化物超導體,它的超導電性主要受Ti原子的3d 電子支配。目前沒有高質量的LTO單晶,多晶樣品上獲得的比熱數據以及Andreev反射譜表現出傳統BCS電-聲相互作用超導體的實驗特征,但軟X射線散射和核磁共振等測量發現該體系中存在較強的電子-

    電荷密度波材料壓力調控研究取得進展

    近日,中國科學院合肥物質科學研究院強磁場科學中心低功耗量子材料研究團隊與安徽大學合作,利用金剛石對頂砧技術,結合極低溫電輸運和變溫拉曼測量,在準一維電荷密度波(CDW)材料 (CuTe)中發現壓力誘導的新CDW態和超導電性。相關研究結果發表在《物質》(Matter)上。超導與CDW之間的關聯,一直是

    電荷密度波材料壓力調控研究取得進展

    近日,中國科學院合肥物質科學研究院強磁場科學中心低功耗量子材料研究團隊與安徽大學合作,利用金剛石對頂砧技術,結合極低溫電輸運和變溫拉曼測量,在準一維電荷密度波(CDW)材料 (CuTe)中發現壓力誘導的新CDW態和超導電性。相關研究結果發表在《物質》(Matter)上。超導與CDW之間的關聯,一直是

    10次摘得諾獎,這個“小學科”為何如此重要?

    超導研究的歷史雖然只有112年,但通過超導研究直接獲得諾貝爾獎的科學家迄今已有10位。超導研究是物理學中一個很小的分支領域,卻誕生了這么多諾獎,可見它非常重要。超導是凝聚態物理研究的一個基本問題。我們知道,材料是由原子組成的,電子在材料里“跑”,必然會受到一定的阻礙,這種阻礙叫“電阻”。根據電阻大小

    百年研究歷史,10次摘得諾獎,這個“小學科”為何如此重要?

    超導研究的歷史雖然只有112年,但通過超導研究直接獲得諾貝爾獎的科學家迄今已有10位。超導研究是物理學中一個很小的分支領域,卻誕生了這么多諾獎,可見它非常重要。超導是凝聚態物理研究的一個基本問題。我們知道,材料是由原子組成的,電子在材料里“跑”,必然會受到一定的阻礙,這種阻礙叫“電阻”。根據電阻大小

    關于BCS測定在血液系統疾病中的臨床應用介紹

      1.BCS測定在血液系統疾病中的臨床應用— 溶血的診斷及鑒別診斷:  溶血不是一個獨立疾病,任何原因引起溶血都表現為RBCS測定值縮短,RBCS縮短是反映溶血最直接、最可靠的指標,亦可定量反映溶血程度。尤其動態定量檢測同一患者RBCS值對臨床判定溶血及溶血程度有更大指導價值。適用于各種疾病合并貧

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频