<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>

  • 電解水制氫中的非貴金屬催化劑之金屬硼化物

    與金屬磷化物類似,金屬硼化物材料也具有一定的HER催化活性,已獲得研究人員的關注并進行研究。金屬硼化物(及其合金)可以簡單的通過金屬鹵化物和硼氫化鹽溶液反應制備。例如,已對摻雜或純非晶態硼化鎳(Ni2B)在堿性介質中的HER電催化性能進行探索。最近,硼化鉬(MoB)在酸性和堿性條件下均具有較好電催化HER活性,但在pH=14時被迅速腐蝕。反而在pH=0時,硼化鉬催化劑能夠長期穩定地催化反應。雖然其表面暴露在空氣中會迅速形成氧化物,但這些氧化物在電催化HER正常操作條件下可在陰極移除。......閱讀全文

    中國科大研制白鐵礦型電解水制氫電催化劑

    原文地址:http://news.sciencenet.cn/htmlnews/2023/7/505283.shtm近日,受到在自然界酸性環境中能夠穩定存在的白鐵礦石的啟發,中國科學技術大學高敏銳教授課題組研制了一種用于質子交換膜(PEM)電解池陰極析氫反應的白鐵礦型催化劑,其可在1 A cm-2的

    我國學者研制出低成本的電解“水制氫”催化劑

      氫能是一種能量高、潔凈的可再生能源,通過電化學水解制備氫氣是當前的研究熱點之一。近期,中國科學技術大學俞書宏教授團隊和高敏銳教授團隊合作,研制出一種高性能低成本的新型三元納米片電催化劑,展現出工業級的優異電解水制氫潛能。國際學術期刊《德國應用化學》日前發表了該研究成果。  近年來,國際學界在全水

    安培級電流下電解水催化劑超穩定性的原理

    近日,大連化物所理論催化創新特區研究組(05T8組)肖建平研究員團隊與日本理化學研究所中村龍平教授團隊在電解水材料設計中取得新進展,制備了尖晶石構型的Co2MnO4材料,實現了超高效安培級電流密度電解水活性,并同時實現在酸性環境中超長的電解穩定性。  制備高活性且在酸性環境中具備超長的電解穩定性非貴

    科學家開發出高效堿性電解水單原子合金催化劑

      近日,中國科學院大連化學物理研究所研究員章福祥團隊設計合成了一種單原子銥修飾鎳合金催化劑,用于堿性電解水析氫、析氧,具有水分子活化與H-H、O-O偶聯功能,顯著降低了析氫與析氧的過電勢。相關成果發表在《先進材料》上。  太陽能光催化技術是實現太陽能至化學能轉化的重要方式之一,而高效助催化劑的開發

    新型低成本非貴金屬電解水催化劑實現18.55%轉換效率

      氫能是一種理想的能源載體,開發大規模、廉價、清潔、高效的制氫技術是氫能有效利用的關鍵。電解水由于環境友好、產品純度高以及無碳排放而成為具有應用前景的綠色制氫方法之一。限制電解水制氫大規模應用的最重要瓶頸是如何大幅降低其電能消耗,因而大幅降低制氫成本。其關鍵是發展廉價、易制備的高性能非貴金屬電解水

    安培級電流下電解水催化劑超穩定性的原理

    近日,大連化物所理論催化創新特區研究組(05T8組)肖建平研究員團隊與日本理化學研究所中村龍平教授團隊在電解水材料設計中取得新進展,制備了尖晶石構型的Co2MnO4材料,實現了超高效安培級電流密度電解水活性,并同時實現在酸性環境中超長的電解穩定性。  制備高活性且在酸性環境中具備超長的電解穩定性非貴

    中國科大設計出一種基于鈷納米晶的電解水產氫催化劑

      近日,中國科學技術大學教授馬明明課題組設計了一種由鈷納米晶自組裝形成的納米空心球,可以作為催化劑在中性水溶液中高效地催化電解水產生氫氣,并且可以在大電流密度下長時間穩定工作。該研究成果在線發表在Angew. Chem. Int. Ed.(doi:10.1002/anie.201601367)上,

    冰硼散外用驗方

    ? 冰硼散由硼砂、冰片、玄明粉、朱砂等中藥組成,具有清熱解毒、消腫止痛之功,傳統應用于咽喉腫痛、牙齦疼痛、口舌生瘡等病癥。近年來,臨床發現它外用治病的新用途:??? 感冒鼻塞:冰硼散適量吹入鼻中,能使鼻黏膜腫脹消退,鼻涕分泌減少,鼻竅得通。??? 流行性腮腺炎:取冰硼散3克,用冷開水調成稀糊狀涂患處

    簡述硼烷的作用

      乙硼烷有強還原性,可作還原劑。它跟氫化鋰反應生成更強的還原劑硼氫化鋰,用于有機合成。乙硼烷可用硼的鹵化物在乙醚溶液中跟氫化鋁鋰LiAlH4反應制得。將乙硼烷加熱到100~250℃得其它高硼烷。  用量最大的是乙硼烷,主要由三氟化硼加工制得。硼烷都具有難聞的臭味,低級硼烷(硼原子數少)的化學性質十

    學者合作在酸性介質電解水釋氧催化劑研究方面取得進展

    圖1(a,b)扭轉應變的GB-Ta0.1Tm0.1Ir0.8O2-δ納米催化劑TEM表征;(c-f)GB-Ta0.1Tm0.1Ir0.8O2-δ納米催化劑的幾何相位分析;(g,h)TaxTmyIr1-x-yO2-δ納米催化劑的電化學表征  在國家自然科學基金項目(批準號:21776248、21676

    我所開發出固體氧化物電解池陰極單原子催化劑

    近日,我所催化基礎國家重點實驗室碳基資源電催化轉化研究組(523組)與中國科學院過程工程研究所合作,在固體氧化物電解池(SOEC)陰極高溫CO2電解反應活性調控方面取得新進展,通過精準構筑高溫穩定的單原子催化劑,實現高溫CO2電解性能明顯提升。SOEC因其高電流密度、高法拉第效率、低過電勢等優勢,被

    新型催化劑實現高溫二氧化碳電解性能明顯提升

    近日,中國科學院大連化學物理研究所與中國科學院過程工程研究所合作,在固體氧化物電解池(SOEC)陰極高溫二氧化碳電解反應活性調控方面取得新進展,通過精準構筑高溫穩定的單原子催化劑,實現高溫二氧化碳電解性能明顯提升。相關成果發表在《德國應用化學》上。SOEC因其高電流密度、高法拉第效率、低過電勢等優勢

    新型催化劑實現高溫二氧化碳電解性能明顯提升

    近日,中國科學院大連化學物理研究所與中國科學院過程工程研究所合作,在固體氧化物電解池(SOEC)陰極高溫二氧化碳電解反應活性調控方面取得新進展,通過精準構筑高溫穩定的單原子催化劑,實現高溫二氧化碳電解性能明顯提升。相關成果發表在《德國應用化學》上。SOEC因其高電流密度、高法拉第效率、低過電勢等優勢

    高效率長壽命金屬玻璃電解水催化劑研究取得進展

      開發新型可再生清潔能源是當前材料領域關注的焦點問題。氫氣,由于極高的質量能量密度、產物無污染等優勢成為了極具潛力的可替代清潔能源,而利用高性能催化劑實現低能耗的水分解制氫是當前獲得氫能源的主要手段之一。如何提高催化劑的性能,包括催化活性及其長期穩定性是影響氫能源應用的關鍵問題之一。迄今為止,已知

    大連化物所鄧德會團隊實現利用鎧甲催化劑去耦合電解水

      近日,中國科學院大連化學物理研究所催化基礎國家重點實驗室二維材料與能源小分子轉化創新特區研究組(05T6組)研究員鄧德會團隊以鎧甲催化劑為電極,構建出高效穩定的電解水解耦裝置。該研究工作為電力削峰填谷策略提供了新思路。  解耦電解水是一種具有潛力的削峰填谷策略,可以將用電低谷期的過剩電力利用起來

    我所電解水催化劑的貴金屬替代研究取得新進展

      氫能源是一種清潔、高效、可再生的理想能源,電解水制氫是實現工業化廉價制備氫氣的重要手段。電解水過程包含析氫和析氧兩個半反應,其中由于析氧反應過程在動力學上的困難性成為了電解水制氫的瓶頸。目前商用的析氧催化劑主要為IrO2和RuO2等貴金屬,其高昂的價格和稀有的儲量制約了這一過程的發展,尋找價格低

    快速獲得鐵基催化劑-電解水制氫研究獲新進展

      近日,安徽工業大學材料科學與工程學院新能源材料團隊在國際權威期刊《先進功能材料》(Advanced Functional Materials)上發表了電催化水分解制氫最新研究成果,該研究可在室溫條件下快速獲得單元金屬鐵基催化劑。  據了解,電解水制取氫氣是目前獲取可再生清潔氫能源的有效方式之一,

    電解池的電解規律及電解意義

    電解池的主要應用用于工業制純度高的金屬,是將電能轉化為化學能的一個裝置(構成:外加電源,電解質溶液,陰陽電極)。使電流通過電解質溶液或熔融電解質而在陰,陽兩極引起還原氧化反應的過程。電解意義使在通常情況下不發生變化的物質發生氧化還原反應,得到所需的化工產品、進行電鍍以及冶煉活潑的金屬,在金屬的保護方

    物理所在二維硼(硼烯)的實驗制備方面取得進展

      自石墨烯發現以來,二維材料受到了廣泛關注,尋找類似石墨烯的新型二維晶體材料,并探索其特殊物理化學性質是當前一個令人關注的研究方向。二維材料性質各異,且易于調控和集成,其豐富多彩的電子態和物理效應為構筑新型的電子器件提供了新機遇。其中,單元素二維材料由于結構簡單、易于分析和調控,可以視為模型化的二

    我所在水電解制氫低/非Pt催化劑研究上取得新進展

      缺乏取代Pt基與低Pt型高性價比析氫催化劑是幾十年來困擾水電解制氫的商業化應用的主要因素。目前的難點在于:缺乏同時解決催化劑本征活性,活性位點密度,導電性和穩定性問題的策略。只有當電子導電性,活性位點密度,本征活性和穩定性問題同時得到解決時,低/非Pt催化劑才能實現在HER催化上的真正應用。  

    大連化物所酸性條件下非貴金屬電解水催化劑方面獲進展

      近日,中國科學院大連化學物理研究所催化基礎國家重點實驗室、太陽能研究部研究員韓洪憲和中科院院士李燦團隊與日本理化學研究所教授(RIKEN)Ryuhei Nakamura研究團隊合作,在酸性條件下非貴金屬電催化分解水研究方面取得新進展,相關研究成果發表在《德國應用化學》(Angew. Chem.

    電解水制氫中的非貴金屬催化劑之金屬磷化物

    金屬磷化物與普通金屬化合物(如碳化物、氮化物、硼化物和硅化物)具有相似的物理特性,其具有較高的機械強度、導電性和化學穩定性。不同于碳化物和氮化物相對簡單的晶體結構(如面心立方、密堆六方或簡單六方),由于磷原子的半徑大(0.109 nm),磷化物的晶體結構是三斜。磷化物中斜方構造子與硫化物類似,但金屬

    簡述三氯化硼的用途

      主要用作有機反應催化劑,如酯化、烷基化、聚合、異構化、磺化、硝化等,也可用作鑄鎂及合金時的防氧化劑,還可用作制備鹵化硼、元素硼、硼烷、硼氫化鈉等的主要原料,還用于電子工業等。

    硼族元素基本性質

    硼族元素基本性質性質BAlGaInTl相對原子質量10.8126.9869.72114.82204.38外圍電子構型2s22p13s23p14s24p15s25p16s26p1原子半徑/pm88143122163170熔化熱/(kJ·mol-1)22.210.75.63.34.3汽化熱/(kJ·mo

    硼烷的相關信息簡介

      化學中,硼烷類化合物是指僅由硼元素和氫元素組成的硼氫化合物。它可以用化學通式BxHy表示。這類化合物都是通過人工合成得到的。由于硼元素位于化學元素周期表第Ⅲ主族,具有較強的還原性(容易被氧化),因此硼烷類化合物大多遇氧氣和水不穩定,需要在無水無氧條件下(惰性氣體保護)保存。(甲)硼烷BH3為氣體

    硼族元素的發現歷史

    硼1808年,英國化學家戴維(Sir Humphry Davy, 1778—1829)在用電解的方法發現鉀后不久,又用電解熔融的三氧化二硼的方法制得棕色的硼。同年法國化學家蓋-呂薩克(Joseph-Louis Gray-Lussac,1778—1850)和泰納(Louis Jacques Thena

    金屬Zr催化的烯烴脫氫硼化和轉移硼化反應研究獲進展

      烯基硼酸酯(VBE)是合成化學中的一類重要中間體,在合成具有生物活性的天然產物方面應用廣泛。目前已知的該類化合物的制備方法存在底物來源受限和官能團兼容性差等不足之處。相對而言,從廉價易得的烯烴和硼烷的直接脫氫硼化是制備VBE的一種極具吸引力的方法。在Rh、Ir、Pd、Ni、Co、和Fe等后過渡金

    水電解下穩定的石墨納米碳封裝的富鈷核殼型電催化劑

    由Co3 [Co(CN)6] 2·nH2O-PB合成核殼結構Co @ NC的示意圖  氧電極在可再生能源技術(如燃料電池和水電解器)的成功商業化中起著至關重要的作用。近日,大邱慶北理工大學Sangaraju Shanmugam教授報告了普魯士藍類似衍生物的氮摻雜納米碳(NC)層捕獲,富鈷,核殼納米結

    研究提出一種高效穩定電解水制氫電催化劑新方法

    近日,太原理工大學化學與化工學院李晉平教授團隊劉光教授課題組在質子交換膜(PEM)電解水制氫領域取得進展,提出一種高效穩定的陽極側的氧析出反應(OER)電催化劑新思路,相關研究成果發表在Advanced Functional Materials上。電化學水分解被視為生產氫氣的一種環保且可持續的技術。

    我所提出調控界面硫遷移提升電解海水析氫催化劑性能新策略

    近日,我所醇類燃料電池及復合電能源研究中心金屬燃料電池系統研究組(DNL0313組)王二東研究員團隊與催化與新材料研究中心(1500組群)楊冰副研究員等合作,在電解海水析氫催化劑研究方面取得新進展,揭示了催化劑在析氫過程中硫原子的動態遷移及碳層捕獲機制,實現了析氫催化劑的超低過電位和良好穩定性。過渡

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频