<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • Antpedia LOGO WIKI資訊

    國家納米中心有機太陽能電池界面修飾研究取得新進展

    近日,中國科學院國家納米科學中心周惠瓊課題組將WOx納米顆粒與商業化的PEDOT:PSS乳液混合用作有機太陽能電池的空穴傳輸層材料,改善了空穴傳輸層的表面自由能,優化了活性層的形貌,從而同時提高了器件的效率和填充因子,為高效有機非富勒烯太陽能電池提供了一種簡單易行的空穴傳輸層修飾方法。該研究以A Highly Effcient Non-Fullerene Organic Solar Cell with a Fill Factor over 0.80 Enabled by a Fine-Tuned Hole-Transporting Layer 為題發表在《先進材料》(Advanced Materials,2018, 1801801)雜志上。 近年來,有機太陽能電池因其廣闊的應用前景而備受關注。而填充因子則是有機太陽能電池中一個重要的光伏性能參數,主要受界面層和活性層性質的影響。 周惠瓊課題組將WOx納米離子與PEDOT:......閱讀全文

    柔性鈣鈦礦太陽能電池研究取得新進展

      5月31日,陜西師范大學和中國科學院大連化學物理研究所雙聘的劉生忠教授/研究員帶領的研究團隊,運用固態離子液體作為電子傳輸材料,制備出效率達到16.09%的柔性鈣鈦礦太陽能電池,突破了目前柔性器件的最高效率。相關結果發表在《先進材料》上。  柔性太陽能電池由于具有質量輕,便攜,易于運輸、安裝等優

    大連化物所柔性鈣鈦礦太陽能電池研究取得新進展

      近日,中國科學院大連化學物理研究所潔凈能源國家實驗室太陽能研究部研究員劉生忠帶領的團隊與陜西師范大學合作,運用固態離子液體作為電子傳輸材料,制備出效率達到16.09%的柔性鈣鈦礦太陽能電池,突破了目前柔性器件的最高效率。相關結果發表在《先進材料》期刊(Advanced Materials, DO

    化學所在鈣鈦礦太陽能電池材料與器件方面取得系列進展

      近年來,鈣鈦礦太陽能電池因其高的轉換效率、簡單的制備工藝和低廉的制造成本受到了全球學術界和產業界的廣泛關注,發展迅速。鈣鈦礦太陽能電池實際應用的重要瓶頸和關鍵問題在于如何實現低成本、大面積、高效率器件及解決穩定性的難題。  在中國科學院戰略性先導科技專項和國家自然科學基金委的支持下,中科院化學研

    熒光量子產率原理及應用

    基本概念及特征量子點:(Quantum dot,QD)又稱半導體納米晶,是導帶電子、價帶空穴及激子在三個空間方向上受束縛的半導體納米結構,其三維尺寸通常在2-10nm范圍內,呈近似球形,市場上使用的量子點材料多為核殼結構。 量子點材料:分為元素半導體量子點、化合物半導體量子點、

    孫立成教授在《自然化學》期刊發表評述文章

      9月29日,大連理工大學精細化工國家重點實驗室孫立成教授應邀在2015年9月出版的《自然化學》期刊以“ 鈣鈦礦太陽能電池: 晶體鉸鏈”為題發表文章,對鈣鈦礦太陽能電池結構組成、工作原理、近幾年的研究進展及目前面臨的挑戰(如何提升電池的穩定性等)進行了深度解讀和剖析,為鈣鈦礦太陽能電池研究的未來發

    石墨炔碳原子雜化類型

    碳家族發展歷程  碳具有sp3、sp2和sp種雜化態,通過不同雜化態可以形成多種碳的同素異形體,如通過sp3雜化可以形成金剛石,通過sp3與sp2雜化則可以形成碳納米管、富勒烯和石墨烯等,如下圖所示。a金剛石 b石墨 c藍絲黛爾石 d、e、f足球烯g無定形碳 h碳納米管  1996年化學諾貝爾獎被授

    美研制出環保型鈣鈦礦太陽能電池

      美國西北大學的科學家研制出了環保型鈣鈦礦太陽能電池,其用錫鈣鈦礦代替鉛(有毒)鈣鈦礦作為捕獲太陽光的設備。新型太陽能電池不僅綠色、高效,且成本低廉,可以使用簡單的“實驗臺”化學方法制造,不需要昂貴的設備或危險材料。研究發表在5月5日(北京時間)出版的《自然?光子學》雜志上。

    研究揭示鈣鈦礦電池大面積空穴提取層的制備

       華東理工大學吳永真教授和朱為宏教授課題組在鈣鈦礦電池大面積空穴提取層的制備方面取得新的進展。相關研究成果近日發表于《先進功能材料》。  鈣鈦礦太陽能電池是目前能源領域研究的前沿和熱點課題之一,其實驗室小面積器件的最高光電轉化效率已經達到25.2%。為實現商業化應用,還需要解決鈣鈦礦電池的穩定性

    JMCA封面:OLED材料與鈣鈦礦電池完美結合

      有機—無機憑借其理想的帶隙、較長的載流子擴散長度、高吸光系數、較小的激子分離能等優點在近些年聚集了眾多科研工作者的目光,掀起了在光電領域的研究熱潮。根據NREL效率圖,目前基于正置高溫二氧化鈦結構鈣鈦礦電池的光電轉化效率已經突破了22.1%。倒置P-I-N結構平面鈣鈦礦電池因其更適宜于低溫卷對卷

    掃描探針顯微鏡在有機太陽能電池研究中的應用說明

          掃描探針顯微鏡是通過對檢測對象的表面和一個微型力敏感元件之間的極微弱的原子間相互作用力來對物體的結構進行深入的研究。  掃描探針顯微鏡在有機太陽能電池研究中的廣泛應用:  有機太陽能電池材料來源廣泛、制作成本低廉、能夠實現大面積滾筒式印刷、并且能夠制作出柔性

    福建物構所鈣鈦礦太陽能電池研究獲進展

      有機-無機雜化鈣鈦礦因其優異的光電子性能,受到全世界研究者的關注。其作為活性層制備的太陽能電池,光電轉換效率已超過25%,接近單晶硅電池的最高值。然而,通過低溫溶液法制備的鈣鈦礦薄膜通常是多晶的。多晶薄膜,在其表面和晶界處容易產生缺陷,會捕獲光生電荷,導致額外的非輻射復合能量損失,限制了器件的開

    物構所鈣鈦礦太陽能電池研究獲進展

      有機-無機雜化鈣鈦礦因其優異的光電子性能,受到全世界研究者的關注。其作為活性層制備的太陽能電池,光電轉換效率已超過25%,接近單晶硅電池的最高值。然而,通過低溫溶液法制備的鈣鈦礦薄膜通常是多晶的。多晶薄膜,在其表面和晶界處容易產生缺陷,會捕獲光生電荷,導致額外的非輻射復合能量損失,限制了器件的開

    中國科學家首次成功合成石墨炔 開辟碳材料研究新領域

    ▲大面積石墨炔薄膜▲宏量制備高純度石墨炔▲二維碳石墨炔的結構模型  石墨炔是一種新的碳同素異形體,其豐富的碳化學鍵,大的共軛體系、寬面間距、優良的化學穩定性和半導體性能一直吸引著科學家的關注。隨著富勒烯、碳管及石墨烯等碳材料陸續通過物理方法成功制備,如何制備石墨炔一直是科學研究的焦點。  

    Science:新型界面結構推進鈣鈦礦太陽能電池商業化進程

      埃爾朗根-紐倫堡大學Yi Hou、Christoph J. Brabec(共同通訊)指出基于混合有機鹵化物鉛鈣鈦礦的薄膜太陽能電池進一步商業化的主要瓶頸是器件中的界面損失。并經過研究提出了一種通用的界面結構,該界面由可溶液加工的,高度可靠性的和具有成本效益的空穴傳輸材料組成,使用這種界面結構不會

    蘇州納米所在可穿戴纖維器件研究領域取得新進展

      作為碳納米管纖維的重要發展方向,柔性纖維狀可編織電學器件正處于蓬勃發展階段。柔性纖維狀的電學器件,如纖維狀鋰離子電池、纖維狀太陽能電池、纖維狀記憶存儲器及纖維狀超級電容器,可以編織成各類織物,與人們日常穿戴結合起來,用于制備智能織物。碳納米管纖維,以其柔性、質輕、高導電及多級界面等特點非常適合作

    低成本也能造出高質量納米線太陽能電池

      太陽能電池有望成為人類絕對清潔且取之不盡用之不竭的能源,然而,要想做到這一點,需要滿足三個條件:便宜的制造元件;廉價且能耗低的制造方法;高轉化效率。據美國物理學家組織網近日報道,現在,美國科學家研制出了一種廉價制造高質量的納米線太陽能電池的新技術,相關研究發表于《自然·納米技術》雜志上。   

    碳納米管復合薄膜/硅異質結太陽能電池研究獲進展

      目前,傳統硅基太陽能電池依然占據主流光伏市場,然而,限制硅基光伏產業發展的主要因素是其生產成本偏高、制備過程繁瑣。所以發展高效率、低成本、大面積和適合大規模生產的太陽能電池已迫在眉睫。宏觀碳納米管薄膜具有良好的力學、電學、光學等性質,而且是柔性的。通過調節生長參數,可以獲得高透光率(可達95%)

    這篇Science論文被質疑:回應有理有據 雙方各執一詞

      緣起:黃勁松團隊提出DLCP技術繪制鈣鈦礦陷阱態的能量分布  2020年3月20日,美國北卡羅來納大學黃勁松教授團隊展示了一種驅動級電容分析技術(DLCP),繪制了金屬鹵化物鈣鈦礦單晶和多晶太陽能電池中陷阱態的空間和能量分布。相關成果以“Resolving spatial and energet

    蘇州納米所在薄膜光伏界面材料研究中取得進展

      有機薄膜電池因具有高效、低成本、輕柔、可采用全溶液法制備等優點,引起了國內外研究學者的廣泛關注。目前電池的光電轉換效率取得了巨大發展,展現出產業化的開發前景。要實現有機光伏的產業化和商業化,必須發展低成本、連續卷軸印刷工藝。對于印刷薄膜光伏而言,可印刷界面材料是實現高效印刷光伏的關鍵材料之一。 

    小離子帶來大問題:鈣鈦礦太陽能電池的外源離子遷移

      有機無機雜化鈣鈦礦太陽能電池是當前太陽能光伏領域的研究熱點。鈣鈦礦太陽能電池可以用溶液法制備,同時具有較高的光電轉化效率,未來有望像印刷報紙一樣印刷太陽能電池,使低成本太陽能電池走進千家萬戶。  與傳統的薄膜電池不同,鈣鈦礦太陽能電池在不同的測試條件下(不同電壓掃描方向和速度),會表現出不一樣的

    2019年度北京市自然科學基金擬資助項目名單公布

    (化學與材料)科學擬資助項目編號擬資助項目名稱依托單位申請者職稱合作單位擬資助金額(萬元)重點項目2191001二維碳基負載過渡金屬單原子的高效氧還原反應催化劑制備與催化機理探究北京大學侯仰龍教授802191002光熱催化二氧化碳加氫制低碳烯烴鐵基納米催化材料的理性設計與性能調控中國科學院理化技術研

    談讓你“高攀不起”的那些國產SCI期刊

      “士別三日,當刮目相看。”恐怕說的就是國產SCI期刊吧。這些高質量期刊發展迅速,大有今天你愛答不理,明天就百投不中的趨勢啊!《National Science Review》  2019年《National Science Review》影響因子超過13。《National Science Re

    福建物構所有機太陽能電池材料和器件研究獲新進展

      有機太陽能電池可以通過溶液方法制成大面積薄膜器件,具有成本低、重量輕、可折疊、半透明等優點,隨著電池轉換效率的不斷提高,有機太陽能電池已經顯現出廣闊的應用前景。   在國家基金委杰出青年基金項目和面上項目、中科院“百人計劃”項目等支持下,中國科學院福建物質結構研究所結構化學國家重點實驗室鄭慶東

    鈣鈦礦太陽能電池:高效、穩定的器件性能

      穩定性、可放大性以及分子界面工程是目前鈣鈦礦太陽能電池(PSC)面臨的幾個重要挑戰。近期,中山大學的畢冬勤教授等人與瑞士洛桑聯邦理工大學的Michael Graetzel教授在Nature Communications上合作發表題為“Multifunctional molecular modul

    有機/無機異質結太陽能電池方面取得系列進展

       當前硅基太陽能電池實驗室效率的世界紀錄(25.6%)是由日本松下公司創造的,其器件結構是基于晶體硅/非晶硅薄膜的異質結形式(HIT電池)。HIT電池中充分利用了非晶硅薄膜對單晶硅表面的高質量鈍化,以極低的界面電學損失獲得超高的開路電壓(740 mV)。借鑒HIT結構,新近發展起來的單晶硅/有機

    有機/無機異質結太陽能電池方面研究取得系列進展

       當前硅基太陽能電池實驗室效率的世界紀錄(25.6%)是由日本松下公司創造的,其器件結構是基于晶體硅/非晶硅薄膜的異質結形式(HIT電池)。HIT電池中充分利用了非晶硅薄膜對單晶硅表面的高質量鈍化,以極低的界面電學損失獲得超高的開路電壓(740 mV)。借鑒HIT結構,新近發展起來的單晶硅/有機

    噻吩環助力厚膜聚合物太陽能電池

      有機太陽能電池作為一種非常具有前景的可再生能源轉換技術,受到了學術界和工業界的廣泛關注。伴隨著新型材料的制備和應用、給受體形貌控制、界面改性和器件工程的提高,有機太陽能電池的光電轉換效率(PCE)已經突破12%,甚至超越13%(10.1021/jacs.7b01493,10.1038/nphot

    高效率的鈣鈦礦太陽能電池IV曲線之后很小

    越來越多的證據表明,在鈣鈦礦太陽能電池中流動離子的存在可以引起電流-電壓曲線滯后。然而,它仍然是一個正在進行的辯論如何移動離子確切地影響設備的操作。我們使用帶移動離子的漂移擴散模擬來描述預條件甲基銨碘化鉛鈣鈦礦太陽能電池的iv曲線,并與實驗結果進行比較。模擬結果表明,這種滯后與表面復合的程度和載流子

    美合成“人造森林”納米系統

      就在媒體大肆喧囂大氣中二氧化碳含量已達到300萬年來最高值的當下,美國能源部(DOE)勞倫斯伯克利國家實驗室的科學家們在最新一期《納米快報》上報告說,他們在開發碳中和可再生能源技術——首個全集成人工光合作用納米系統上取得了重要進展。   主持該項研究的伯克利實驗室材料科學部化學家楊培棟(音譯)

    美研發出首個全集成人工光合作用納米系統

      據物理學家組織網5月17日(北京時間)報道,就在媒體大肆喧囂大氣中二氧化碳含量已達到300萬年來最高值的當下,美國能源部(DOE)勞倫斯伯克利國家實驗室的科學家們在最新一期《納米快報》上報告說,他們在開發碳中和可再生能源技術——首個全集成人工光合作用納米系統上取得了重要進展。   主持該項研究

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频