保證可靠性單片機系統的電磁兼容性設計詳解
隨著單片機系統越來越廣泛地應用于消費類電子、醫療、工業自動化、智能化儀器儀表、航空航天等各領域,單片機系統面臨著電磁干擾(EMI)日益嚴重的威脅。電磁兼容性(EMC)包含系統的發射和敏感度兩方面的問題。如果一個單片機系統符合下面三個條件,則該系統是電磁兼容的: ① 對其它系統不產生干擾; ② 對其它系統的發射不敏感; ③ 對系統本身不產生干擾。 假若干擾不能完全消除,但也要使干擾減少到最小。干擾的產生不是直接的(通過導體、公共阻抗耦合等),就是間接的(通過串擾或輻射耦合)。電磁干擾的產生是通過導體和通過輻射,很多電磁發射源,如光照、繼電器、DC電機和日光燈都可引起干擾;AC電源線、互連電纜、金屬電纜和子系統的內部電路也都可能產生輻射或接收到不希望的信號。在高速單片機系統中,時鐘電路通常是寬帶噪聲的最大產生源,這些電路可產生高達300 MHz的諧波失真,在系統中應該把它們去掉。另外,在單片機系統中,最容易受影響的是復位......閱讀全文
保證可靠性 單片機系統的電磁兼容性設計詳解
隨著單片機系統越來越廣泛地應用于消費類電子、醫療、工業自動化、智能化儀器儀表、航空航天等各領域,單片機系統面臨著電磁干擾(EMI)日益嚴重的威脅。電磁兼容性(EMC)包含系統的發射和敏感度兩方面的問題。如果一個單片機系統符合下面三個條件,則該系統是電磁兼容的: ① 對其它系統不產生干擾; ② 對
單片機設計過程中如何處理電磁兼容性問題
對于新手來說,在單片機的電路設計中可能不會很注意電路設計中電磁干擾對設計本身的輸入輸出的影響,但是對于一個電子工程師來說其中的厲害關系就不言而喻了,它不僅關系了單片機在控制在中的能力和準確度,還關系到企業在行業中的競爭。對電磁干擾的設計我們主要從硬件和軟件方面進行設計處理,下面就是從單片機的
PCB設計中的電磁兼容性考慮(二)
PCB設計的EMC考慮對于高速PCB(Printed Circuit Board,印制電路板)設計中EMI問題,通常有兩種方法解決:一種是抑制EMI的影響,另一種是屏蔽EMI的影響。這兩種方式有很多不同的表現形式,特別是屏蔽系統使得EMI影響電子產品的可能性降到了最低。射頻(RF)能量是由印制電路板
PCB設計中的電磁兼容性考慮(四)
(3)傳輸線效應以及終端匹配傳輸線就是一個適合在兩個或多個終端間有效傳播電功率或電信號的傳輸系統,如金屬導線、波導、同軸電纜和PCB走線。如果傳輸線終端不匹配,或者信號在阻抗不連續的PCB走線上傳送,電路就會出現功能性問題和EMI干擾,這包括電壓下降、沖擊激勵產生的振蕩等。在處理傳輸線效應過程中,線
PCB設計中的電磁兼容性考慮(三)
三、 電磁兼容的合理PCB設計隨著系統設計復雜性和集成度的大規模提高,電子系統設計師們正在從事100MHZ以上的電路設計,總線的工作頻率也已經達到或者超過50MHZ,有的甚至超過100MHZ。當系統工作在50MHz時,將產生傳輸線效應和信號的完整性問題;而當系統時鐘達到120MHz時,除非使用高速電
PCB設計中的電磁兼容性考慮(一)
電磁兼容的一般概念考慮電磁兼容的根本原因在于電磁干擾的存在。電磁干擾(Electromagnetic Interference,簡稱EMI)是破壞性電磁能從一個電子設備通過輻射或傳導傳到另一個電子設備的過程。一般來說,EMI特指射頻信號(RF),但電磁干擾可以在所有的頻率范圍內發生。電磁兼容性(El
深度剖析電磁兼容性原理、方法及設計(二)
屏蔽體材料選擇的原則是:(1)當干擾電磁場的頻率較高時,利用低電阻率(高電導率)的金屬材料中產生的渦流(P=I2R,電阻率越低(電導率越高),消耗的功率越大),形成對外來電磁波的抵消作用,從而達到屏蔽的效果。(2)當干擾電磁波的頻率較低時,要采用高導磁率的材料,從而使磁力線限制在屏蔽體內部,防止擴散
深度剖析電磁兼容性原理、方法及設計(三)
2.5濾波主要考慮(1)抑制工作頻帶以外的干擾;(2)在信號電路中用吸收濾波器消除無用的頻譜成分;(3)在電源電路(尤其是開關電源中),操縱電路,控制電路,以及轉換電路中消除產生的干擾。在工程實際中,一個最值得注意的地方是電源濾波器的安裝,常見的濾波器的錯誤安裝如圖2所示。2.6電子設備的空間位置由
深度剖析電磁兼容性原理、方法及設計(一)
什么是電磁兼容電磁兼容性(EMC)是指設備或系統在其電磁環境中符合要求運行并不對其環境中的任何設備產生無法忍受的電磁干擾的能力。因此,EMC包括兩個方面的要求:一方面是指設備在正常運行過程中對所在環境產生的電磁干擾不能超過一定的限值;另一方面是指器具對所在環境中存在的電磁干擾具有一定程度的抗擾度,即
某星載應答機電磁兼容性設計案例(二)
(2)結構件間接縫的屏蔽一般情況下,結構件不同部分的結合處不可能完全接觸,只能在某些點接觸,這就構成了一個孔洞陣列。縫隙是造成機箱屏蔽效能降低的主要原因之一。機箱采用導電性能良好的鋁合金材料加工而成,機箱與上、下蓋板的接縫均為狹長縫,它們是電磁泄漏的主要通道。為了提高屏蔽效能,必須盡可能消除或減小縫