<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>

  • “閃耀”Nature拉曼顯微術突破傳統光學成像顏色極限

    近年來,顯微鏡技術在不斷地突破自身的局限。來自美國哥倫比亞大學的研究人員報道了一種全新的成像技術:電子預共振受激拉曼散射顯微鏡(Electronic Pre-Resonance Stimulated Raman Scattering Microscopy)。這一技術結合了拉曼散射光譜窄(~1 nm)以及熒光分析靈敏度高的優點。研究人員利用這種熒光成像技術,發現了24種顏色各異的探針,展示了多達16種顏色的活細胞成像和8種顏色的腦組織成像。這一研究成果公布在4月19日的Nature雜志上,文章的通訊作者是哥倫比亞大學化學系閔瑋教授,閔瑋早年畢業于北京大學,2008年在哈佛大學獲化學博士學位,導師為美國科學院院士謝曉亮教授,之后在其課題組從事博士后研究。閔瑋博士現任哥倫比亞大學化學系終身教授,研究成果多次發表在Nature Method、PNAS等國際學術期刊,因其科學貢獻獲得過很多獎項,其中包括2013年的斯隆研究......閱讀全文

    “閃耀”Nature-拉曼顯微術突破傳統光學成像顏色極限

    近年來,顯微鏡技術在不斷地突破自身的局限。來自美國哥倫比亞大學的研究人員報道了一種全新的成像技術:電子預共振受激拉曼散射顯微鏡(Electronic Pre-Resonance Stimulated Raman Scattering Microscopy)。這一技術結合了拉曼散射光譜窄(

    哥大閔瑋組:新型顯微術突破傳統光學成像的顏色極限

      生命科學研究水平的發展很大程度上要歸功于新型研究手段和生物技術的創新。其中,光學成像技術貫穿了生命科學研究的歷史與未來。上至17世紀列文虎克利用顯微鏡開創了微生物學,下到如今已經廣泛應用的熒光共聚焦顯微鏡,這個領域的每一次技術突破都極大地增強了人們認識微觀世界的能力。近年來,光學顯微鏡技術在不斷

    相干拉曼散射顯微術詳解-Ⅱ

    上節我們講到——相干拉曼散射(CRS)顯微術是一種基于分子化學鍵振動的成像手段。相比于熒光光譜,拉曼光譜具有窄得多的譜峰寬度(圖 1),可以選擇探測的分子種類將更多,特異性也更高。例如,生物組織中的蛋白、脂質和核酸等具有各自的拉曼光譜特征,利用 CRS 可以在無需染色/標記的前提下對它們進行

    又一華裔新星-Nature發文報道成像技術重大突破

      來自美國哥倫比亞大學的研究人員報道了一種全新的成像技術:電子預共振受激拉曼散射顯微鏡(Electronic Pre-Resonance Stimulated Raman Scattering Microscopy)。這一技術結合了拉曼散射光譜窄(~1 nm)以及熒光分析靈敏度高的優點。研究人員利

    相干拉曼散射顯微術詳解I

    “一花一世界”,這句充滿禪意的話在微觀視野中得到完美詮釋。而構成世間萬千紛繁的原子由化學鍵聯合為分子,不同的分子往往具有特異性的化學鍵振動,成為它們的指紋特征。相干拉曼散射(Coherent Raman Scattering,CRS)顯微術便是通過探測目標分子的特征振動來提供成像所需的襯度, 同時基

    顯微成像拉曼光譜儀概述

      顯微成像拉曼光譜儀是一種用于材料科學、畜牧、獸醫科學、農學、藥學領域的計量儀器,于2018年10月9日啟用。  技術指標  1. *光譜儀:光譜儀采用三反射鏡消像差光路設計,全光譜范圍無色差,系統通光效率>30%。 2.*EMCCD探測器 1).Andor公司EMCCD探測器 2).真空密封,致

    新容積化學成像技術有望實現非侵入性早期疾病診斷

    近日,來自中國西安電子科技大學生物光學成像研究組的研究人員通過研究開發了一種全新的成像技術:受激拉曼投影顯微和斷層成像術(Stimulated Raman projection microscopy and tomography);這一技術結合了受激拉曼散射顯微成像免標記以及貝塞爾光束穿透深

    突破衍射極限,還看“近場光學”!

    原文地址:http://news.sciencenet.cn/htmlnews/2023/4/499626.shtm

    大咖講堂-|-相干拉曼散射顯微術-Ⅱ

      上節我們講到——相干拉曼散射(CRS)顯微術是一種基于分子化學鍵振動的成像手段。相比于熒光光譜,拉曼光譜具有窄得多的譜峰寬度(圖 1),可以選擇探測的分子種類將更多,特異性也更高。例如,生物組織中的蛋白、脂質和核酸等具有各自的拉曼光譜特征,利用 CRS 可以在無需染色/標記的前提下對它們進行區分

    拉曼成像技術

    拉曼成像技術是新一代快速、高精度、面掃描激光拉曼技術,它將共聚焦顯微鏡技術與激光拉曼光譜技術完美結合,作為第三代Raman技術,具備高速、極高分辨率成像的特點。相對于原來的傳統拉曼應用技術而言,新一代拉曼成像速度是常規Raman mapping的300-600倍,一般在幾分鐘之內即可獲取樣品高分率的

    光學顯微鏡的極限

    光學顯微鏡的極限要了解電子顯微鏡,我們還得從光學顯微鏡說起。在生活中,當我們需要放大觀察一些小東西時,首先想到的就是放大鏡,即光學凸透鏡。凸透鏡利用光線通過透鏡時發生的折射使其聚焦,從而達到放大被觀察對象的目的。常用的現代光學顯微鏡則是多個光學透鏡的組合,其中起放大作用的目鏡和物鏡就是凸透鏡。在我的

    超高速顯微拉曼成像光譜儀

    RIMA激光拉曼顯微成像系統技術是新一代快速、高精度、面掃描激光拉曼技術,它將共聚焦顯微技術與激光拉曼光譜技術完美結合!Photon etc公司RIMA拉曼成像技術是新一代快速、高精度、面掃描激光拉曼技術,它將共聚焦顯微技術與激光拉曼光譜技術完美結合,與傳統的點成像拉曼系統不同,采用面成像技

    又一華裔新星-Nature發文報道成像技術重大突破

      來自美國哥倫比亞大學的研究人員報道了一種全新的成像技術:電子預共振受激拉曼散射顯微鏡(Electronic Pre-Resonance Stimulated Raman Scattering Microscopy)。這一技術結合了拉曼散射光譜窄(~1 nm)以及熒光分析靈敏度高的優點。研究人員利

    拉曼成像應用案例

    應用案例編輯快速區分單層與多層石墨烯nanphoton石墨烯案例激光源:532nm。物鏡:100X,NA=0.9。光譜數:67,600(400*169)。測量時間:5分30秒。通過高速高分辨拉曼成像技術,可以對不同層數的石墨烯快速成像。以350納米的高空間分辨率,僅用5分鐘的測量時間即可識別從單層到

    掃描拉曼埃分辨顯微術:多名學者合作在拉曼領域獲進展

      最近,中國科學院院士、中國科學技術大學教授侯建國領銜的單分子科學團隊的董振超研究組與羅毅研究組,在單分子拉曼成像領域取得新進展,實現了埃級單化學鍵分辨的分子內各種振動模式的實空間成像,并提出了一種全新的分子化學結構重構技術——掃描拉曼埃分辨顯微術(Scanning Raman Picoscopy

    侯建國院士團隊實現埃級單化學鍵分辨實空間成像

      最近,中國科學院院士、中國科學技術大學教授侯建國領銜的單分子科學團隊的董振超研究組與羅毅研究組,在單分子拉曼成像領域取得新進展,實現了埃級單化學鍵分辨的分子內各種振動模式的實空間成像,并提出了一種全新的分子化學結構重構技術——掃描拉曼埃分辨顯微術(Scanning Raman Picoscopy

    最靈敏的單分子遠場拉曼顯微成像:拉曼與熒光的圓舞曲

    拉曼光譜的精細結構可以提供豐富的分子結構信息,并且可以用于解析分子的動力學以及與溶劑環境的相互作用。然而遺憾的是,拉曼散射過程異常微弱,普通拉曼散射的散射截面比一般染料分子的吸收截面要小1014倍。通過表面等離子體共振對光場的放大,表面增強拉曼光譜技術可以實現單分子靈敏度的拉曼檢測。然而這種表面增強

    拉曼成像之線形照明

    線形照明高速高分辨拉曼成像系統采用線性照明,產生線形RAMAN散射光。特殊的光學系統確保光強的均勻分布狹縫聚焦。拉曼成像共聚焦光學系統實現高分辨率拉曼成像。同一共聚焦光學系統用于快速拉曼成像。拉曼成像

    拉曼成像光譜儀

      拉曼成像光譜儀是一種用于生物學、基礎醫學、臨床醫學、藥學領域的分析儀器,于2013年12月31日啟用。  技術指標  1) 激光器:內置3個激光器 —532nm、638nm和785nm; 2) 光柵:4塊光柵全自動切換,自由選擇多種光譜分辨率; 3) 光譜范圍:100cm-1到4000cm-1,

    拉曼成像的應用案例

    快速區分單層與多層石墨烯激光源:532nm。物鏡:100X,NA=0.9。光譜數:67,600(400*169)。測量時間:5分30秒。通過高速高分辨拉曼成像技術,可以對不同層數的石墨烯快速成像。以350納米的高空間分辨率,僅用5分鐘的測量時間即可識別從單層到四層的石墨烯及其分布。材料應力分布圖像分

    傳統光學顯微鏡與近場光學顯微鏡

    ? ? ? 近場光學顯微鏡是對于常規光學顯微鏡的革命。它不用光學透鏡成像,而用探針的針尖在樣品表面上方掃描獲得樣品表面的信息。分析了傳統光學顯微鏡與近場光學顯微鏡成像原理的物理本質和兩種顯微鏡系統結構的異同點。介紹了光纖探針的制作方法。重點討論了近場探測原理、光學隧道效應及非輻射場的性質。  傳統光

    什么是光學顯微術?

    中文名稱光學顯微術英文名稱optical microscopy定  義用光作照明工具的顯微術。應用學科機械工程(一級學科),光學儀器(二級學科),顯微鏡-顯微鏡一般名詞(三級學科)

    激光共焦顯微拉曼光譜儀相比傳統有什么優勢

    激光共焦顯微拉曼光譜儀比傳統的色散型拉曼光譜儀在工作效率,運行速度、分辨率、靈敏度和微量樣品分析諸方面都有了很大的提高。它采用先進的光學系統設計及全息濾光片,CCD探測器等先進技術,使儀器的靈敏度及數據采集速度大大提高,總效率(信號/功率!時間)比傳統儀器提高了近3個數量級。利用共焦顯微拉曼光譜儀作

    近場光學顯微鏡的背景

    傳統光學顯微鏡(即遠場光學顯微鏡)是顯微鏡家族中年代最久遠的成員,它曾是觀測微小結構的唯一手段。傳統光學顯微鏡由光學透鏡組成,利用折射率變化和透鏡的曲率變化,將被觀察的物體放大,來獲得其細節信息。然而,光的衍射極限限制了光學顯微鏡分辨力的進一步提高。由瑞利分辨力極限可知,光學顯微鏡的放大倍數是不能任

    Nature-Communications:我國研制光學薄膜的平面顯微成像元件

      近日,中國科大物理學院光電子科學與技術安徽省重點實驗室/合肥微尺度物質科學國家研究中心張斗國教授研究組提出并實現了一種基于光學薄膜的平面型顯微成像元件,用作被測樣本的載波片,可在常規的明場光學顯微鏡上實現暗場顯微成像和全內反射成像,而獲取高對比度的光學顯微圖像。研究成果以“Planar phot

    WITec推出TrueSurface顯微拉曼光譜儀

     拉曼聚焦形貌圖像——最前沿顯微鏡配置的下一個革新   WITec,納米顯微鏡分析系統的全球領導者,推出新的真正表面顯微配件。這一革命性成像模式的核心要素是一種光學輪廓的集成傳感器。一般的共聚焦顯微鏡探測面積比較小,而TrueSurface顯微拉曼光譜儀的特點是探測面

    超高分辨率顯微技術的又一突破:分辨率提高四倍

      幾個世紀以來,光學顯微鏡的“衍射極限”一直被認為是無法超越的。近年來,科學家們從不同途徑“突破”了這一極限,使人們能夠分辨相距少于200nm的兩個物體。這種超高分辨率顯微技術也因此獲得了2014年諾貝爾化學獎。  美國西北大學的研究團隊最近在Nature Communications雜志上發布了

    光學顯微術的技術特點

    中文名稱光學顯微術英文名稱optical microscopy定  義用光作照明工具的顯微術。應用學科機械工程(一級學科),光學儀器(二級學科),顯微鏡-顯微鏡一般名詞(三級學科)

    光學顯微鏡成像原理

    學生用的顯微鏡是反像,上下左右與實際物體正好相反。物鏡放大率乘以目鏡放大率就是總放大倍數。

    光學顯微鏡成像原理

    ??顯微鏡是由一個透鏡或幾個透鏡的組合構成的一種光學儀器,是人類進入原子時代的標志。主要用于放大微小物體成為人的肉眼所能看到的儀器。光學顯微鏡成像原理:???????光學顯微鏡主要由目鏡、物鏡、載物臺和反光鏡組成。目鏡和物鏡都是凸透鏡,焦距不同。物鏡的凸透鏡焦距小于目鏡的凸透鏡的焦距。物鏡相當于投影

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频