激光掃描共聚焦顯微鏡(Laser scanning confocal microscope)是20世紀80年代中期發展起來并得到廣泛應用的新技術 ,它是激光、電子攝像和計算機圖像處理等現代高科技手段滲透,并與傳統的光學顯微鏡結合產生的先進的細胞分子生物學分析儀器,在生物及醫學等領域的應用越來越廣泛,已經成為生物醫學實驗研究的必備工具 。 傳統熒光顯微鏡使用熒光物質標志細胞中的特定結構,不僅圖像與背景的對比度增強,而且由于許多熒光顯微鏡的光源使用短波長的紫外光,大大提高了分辨率(δ=0.61·λ/NA,其中δ為顯微鏡的分辨率;λ為照明光線的波長;NA 為物鏡的數值孔徑)。但當所觀察的熒光標本稍厚時,傳統熒光顯微鏡一個難以克服的缺點就顯現出來:焦平面以外的熒光結構模糊、發虛。原因是大多數生物學標本是層次區別的重疊結構(如耳蝸基底膜。其實是外毛細胞 、多種支持細胞 、神經纖維等組成的空間結構),,在普通光學顯微鏡下聚焦平面的變化......閱讀全文
1、激光掃描共聚焦顯微鏡用途 激光掃描共聚焦顯微鏡(Confocal laser scanning microscope,CLSM)是近代最先進的細胞生物醫學分析儀器之一。目前,激光掃描共聚焦顯微技術已用于細胞形態定位、立體結構重組、動態變化過程等研究,并提供定量熒光測定、定量圖像分析等實用研
激光掃描共聚焦顯微鏡與圖像半定量分析相比,具有以下優點: 1.更精細、精確度更高。激光掃描共聚焦顯微鏡對免疫熒光組織化學染色樣品做定量分析時,利用激光聚焦和系統軟件分析對組織進行深層掃描,不破壞組織細胞結構,可深層次準確定位并精確定量。而一般圖像分析只是以熒光灰度的差別變化進行半定量
激光掃描共聚焦顯微鏡與圖像半定量分析相比,具有以下優點: 1.更精細、精確度更高。激光掃描共聚焦顯微鏡對免疫熒光組織化學染色樣品做定量分析時,利用激光聚焦和系統軟件分析對組織進行深層掃描,不破壞組織細胞結構,可深層次準確定位并精確定量。而一般圖像分析只是以熒光灰度的差別變化進行半定量分
原子力激光共焦顯微鏡的主要原理是利用激光掃描束通過光柵針孔形成點光源,在熒光標記標本的焦平面上逐點掃描,采集點的光信號通過探測針孔到達光電倍增管,再經過信號處理,在計算機監視屏上形成圖像。對于物鏡焦平面的焦點處發出的光在針孔處可以得到很好的會聚,可以全部通過針孔被探測器接收。而在焦平面上下位置發出的
顯微鏡是觀察細胞的主要工具。根據光源不同,可分為光學顯微鏡和電子顯微鏡兩大類。前者以可見光(紫外線顯微鏡以紫外光)為光源,后者則以電子束為光源。 —、光學顯微鏡 (一)、普通光學顯微鏡 普通生物顯微鏡由3部分構成,即:①照明系統,包括光源和聚光器;②光學放大系統,由物鏡和目鏡組
顯微鏡是觀察細胞的主要工具。根據光源不同,可分為光學顯微鏡和電子顯微鏡兩大類。前者以可見光(紫外線顯微鏡以紫外光)為光源,后者則以電子束為光源。 —、光學顯微鏡 (一)、普通光學顯微鏡 普通生物顯微鏡由3部分構成,即:①照明系統,包括光源和聚光器;②光學放大系統,由物鏡和目鏡組
需要在高度方向上做掃描,得到一系列的切片圖,然后進行圖像疊加并得到三維圖像,從而提高景深范圍。相對于傳統的光學顯微鏡,激光共聚焦顯微鏡其橫向分辨率提高40%以上,優秀可達120nm。激光共聚焦顯微鏡樣品適用性強,非接觸測試,無需樣品制備和導電性處理,對樣品無損傷(粉末、軟性樣品以及透明樣品均可測試)
高內涵成像技術已成為不可缺少的工具,推進我們在細胞水平了解人體是如何工作的。——Anthony Davies,都柏林大學圣三一學院 高內涵研究中心主管 高內涵分析(High Content Analysis,簡稱HCA)是對高分辨率顯微鏡所拍攝細胞圖像的自動提取和分析。高內涵,意味著豐富
光學顯微鏡作為細胞生物學的研究工具,可以分辨出小于其照明光源波長一半的細胞結構。隨著光學、視頻、計算機等技術飛速發展而誕生的激光掃描共聚焦顯微鏡 (Laser Scanning Confocal Microscope,LSCM),則使現代顯微鏡有能力研究和分析細胞在變化過程中的結構。特別是
顯微鏡是觀察細胞的主要工具。根據光源不同,可分為光學顯微鏡和電子顯微鏡兩大類。前者以可見光(紫外線顯微鏡以紫外光)為光源,后者則以電子束為光源。—、光學顯微鏡(一)、普通光學顯微鏡普通生物顯微鏡由3部分構成,即:①照明系統,包括光源和聚光器;②光學放大系統,由物鏡和目鏡組成,是顯微鏡的主體,為了消除
雙光子熒光顯微鏡是結合了激光掃描共聚焦顯微鏡和雙光子激發技術的一種新技術。雙光子激發的基本原理是:在高光子密度的情況下,熒光分子可以同時吸收 2 個長波長的光子,在經過一個很短的所謂激發態壽命的時間后,發射出一個波長較短的光子;其效果和使用一個波長為長波長一半的光子去激發熒光分子是相同的。雙光子
雙光子熒光顯微鏡是結合了激光掃描共聚焦顯微鏡和雙光子激發技術的一種新技術。 雙光子激發的基本原理是:在高光子密度的情況下,熒光分子可以同時吸收 2 個長波長的光子,在經過一個很短的所謂激發態壽命的時間后,發射出一個波長較短的光子;其效果和使用一個波長為長波長一半的光子去激發
激光掃描共聚焦顯微鏡(Confocal laser scanning microscope,簡稱CLSM)是近代生物醫學圖象儀器。它是在熒光顯微鏡成象的基礎上加裝激光掃描裝置,使用紫外光或可見光激發熒光探針。 利用計算機進行圖象處理,從而得到細胞或組織內部微細結構的熒光圖象,以及在亞細胞水平上
雙光子熒光顯微鏡是結合了激光掃描共聚焦顯微鏡和雙光子激發技術的一種新技術。 雙光子激發的基本原理是:在高光子密度的情況下,熒光分子可以同時吸收 2 個長波長的光子,在經過一個很短的所謂激發態壽命的時間后,發射出一個波長較短的光子;其效果和使用一個波長為長波長一半的光子去激發熒光分子是相同的。雙
激光共聚焦顯微鏡是20世紀80年代中期發展起來并得到廣泛應用的新技術 ,它是激光、電子攝像和計算機圖像處理等現代高科技手段滲透,并與傳統的光學顯微鏡結合產生的先進的細胞分子生物學分析儀器,在生物及醫學等領域的應用越來越廣泛,已經成為生物醫學實驗研究的必備工具 。 傳統熒光顯微鏡使用
雙光子激發的基本原理是:在高光子密度的情況下,熒光分子可以同時吸收 2 個長波長的光子,在經過一個很短的所謂激發態壽命的時間后,發射出一個波長較短的光子;其效果和使用一個波長為長波長一半的光子去激發熒光分子是相同的。雙光子激發需要很高的光子密度,為了不損傷細胞,雙光子顯微鏡使用高能量鎖模脈沖激光器。
對于厚度小于 5μm 的樣品,比如貼壁細胞或很薄的組織切片,在常規的寬場熒光顯微鏡下,定量的共定位分析一般是可以的。然而,對于厚樣品,圖像應以具有一定軸向尺寸的光學切片來記錄,來分析看起來共定位的熒光團是否真正位于同一個側向焦平面上,或在 Z 軸上他們是否彼此疊加。厚樣品的熒光團共定位分析應通過獲得
在普通寬視野光學顯微鏡中,整個標本全部都被水銀弧光燈或氙燈的光線照明,圖像可以用肉眼直接觀察 。 同時,來自焦點以外的其他區域的熒光對結構的干擾較大,尤其是標本的厚度在 2um 以上時,其影響更為明顯。 激光共聚焦顯微鏡脫離了傳統光學顯微鏡的場光源和局部平面成像模式采用激光束作光源,激光束經照
多光子共聚焦顯微鏡是光學顯微鏡的重大改進,主要表現為可以觀察活細胞、固定細胞和組織的深層結構,并且可以得到清晰銳利的多層Z平面結構,即光學切片,并以此可以構建標本的三維實體結構。共聚焦顯微鏡采用激光光源,經過擴充后充滿整個物鏡后焦平面,然后經過物鏡的透鏡系統,在標本的焦平面上會聚成非常小的點。根據物
顯微鏡分類一、 按使用目鏡的數目可分為單目、雙目和三目顯微鏡。單目價格比較便宜,可以作為初學愛好者或者學生的選擇,雙目稍貴點,觀察的時候兩眼可以同時觀察,觀察得舒適些,三目又多了一目,它的作用主要是連接數碼相機或電腦用,比較適合長時間工作的人員選用。 二、顯微鏡分類根
光學顯微成像的衍射極限 生物醫學成像技術是基礎生物學研究和臨床醫學最重要的工具之一。回顧歷史,已有多位科學家憑借在成像技術方面的突破獲得諾貝爾獎。其中,Roentgen 因發現 X 射線獲得 1901 年諾貝爾物理學獎; Zernike 因發明相襯顯微鏡獲得 1953 年諾貝爾
光學顯微成像的衍射極限生物醫學成像技術是基礎生物學研究和臨床醫學最重要的工具之一。回顧歷史,已有多位科學家憑借在成像技術方面的突破獲得諾貝爾獎。其中,Roentgen 因發現 X 射線獲得 1901 年諾貝爾物理學獎; Zernike 因發明相襯顯微鏡獲得 1953 年諾貝爾物理學獎; Ruska
提到在體小動物神經成像,人們自然會聯想到鈣離子熒光探針局部注射或遺傳鈣指示劑(如Gcamp家族)結合雙/三光子顯微鏡的經典在體成像組合。 隨著基因改造技術的突飛猛進,通過病毒轉染和轉基因技術,在神經元內源性表達“基因編碼類鈣指示劑(genetically encoded calcium ind
MemGlow?應用程序很簡單,當將MemGlow?探針引入水性介質中時,兩親性探針會形成自發淬滅性的聚集體,直到與質膜的接觸引發其解離并分散到脂質雙層中。整合后,熒光探針即可進行生物成像。從MemGlow?488到MemGlow?700,M
激光掃描共聚焦顯微鏡是研究亞微米細微結構的有效手段,廣泛應用于生物醫學、材料檢測等領域,是從事生物醫學和材料科學研究的科技工作者必備的研究工具。然而,在共聚焦顯微鏡中,其分辨率與信噪比相互矛盾,不能同時實現高分辨率和高信噪比。近年來出現的基于共聚焦顯微成像的圖像掃描顯微成像技術解決了這一問題,可
地球環境噪音披露內部深處的線索 一種基于地震噪聲,即地球的集體“嗡嗡聲”的新技術正在幫助科學家們探索我們行星的內部深處。地球的表面受到了大氣壓變化、海浪、雨、風和喧鬧的人類活動的持續性的轟擊。這些力產生了作為地球背景噪聲一部分的地震波。人類無法聽到地震噪聲,但我們可以看到它
【摘要】本文從拉曼散射原理出發,介紹了拉曼技術的特征,以及拉曼技術的優勢和不足,從激光技術和納米技術出發介紹了當前拉曼技術的廣泛發展和應用。綜述了近年來了曼技術的主要的分析技術。涉及拉曼光譜技術的發展簡史,發展現狀和最新研究進展等方面。 1、拉曼光譜的發展簡史 印度物理學家拉曼于1928年
鈣離子在許多生理過程中起著復雜的作用。例如,細胞內鈣離子在促進神經元從神經元中釋放神經遞質的信號轉導途徑中必不可少,并參與所有肌肉細胞收縮所需的機制。細胞離子濃度受被動和主動離子通道和泵的調節。離子通道和泵的故障可能導致離子濃度調節不當,從而產生不利于正常細胞功能的不利條件。鈣離子濃度研究領域中常使
1 激光共聚焦顯微拉曼光譜技術簡介 拉曼信號是一種由入射光引起的分子的非彈性散射信號,拉曼光譜技術無需樣品準備和制備過程,簡單,可重復且能夠進行無損傷定性定量分析。水的拉曼散射微弱,拉曼光譜也因此成為研究水溶液中的生物樣品和化學化合物的理想工具。激光共聚焦顯微拉曼光譜技術是一種激光為基礎的
分析測試百科網訊 2021年4月10日,由北京市電鏡學會主辦、北京理化分析測試技術學會承辦的北京市2021年度激光共焦及超高分辨顯微學學術研討會在北京隆重舉行。本次研討會共有近200人出席、參與。分析測試百科網作為會議合作媒體,為您帶來全程跟蹤報道。研討會現場中國科學院動物研究所 王榮榮主任報告