微流控分析是以微管道為網絡連接微泵、微閥、微儲液器、微電極、微檢測元件等具有光、電和流體輸送功能的元器件,最大限度地把采樣、稀釋、加試劑、反應、分離、檢測等分析功能集成在芯片上的微全分析系統。目前,微流控分析芯片的大小約幾個平方厘米,微管道寬度和深度(高度)為微米和亞微米級。微流控分析芯片的加工技術起源于半導體及集成電路芯片的微細加工,但它又不同于以硅材料二維和淺深度加工為主的集成電路芯片加工技術。近來,作為微流控分析芯片基礎的芯片材料和加工技術的研究已受到許多發達國家的重視。微流控分析芯片的材料和特點微流控分析芯片的材料剛性材料——單晶硅、無定性硅、玻璃、石英等;剛性有機聚合物材料如環氧、聚脲、聚氨、聚苯乙烯和聚甲基丙烯酸甲酯等;彈性材料——二甲基硅氧烷( PDMS) 。微流控分析芯片材料的特點材料種類優點缺點單晶硅具有化學惰性和熱穩定性加工工藝成熟 ,可使用光刻和蝕刻等制備集成電路的成熟工藝進行加工及批量生產易碎 ,價格貴不......閱讀全文
硅和玻璃是最早用于微流控芯片的基體材料,主要是由于其加工方法可以直接套用MEMS和微電子領域的加工方法。硅和玻璃材料價格昂貴且不易加工,在微流控芯片的發展過程中很快就被以各類聚合物為代表的低成本材料所替代。現有各類微流控芯片的加工方法中,可供選擇的低成本材料很多,有各類彈性體材料、熱塑性聚合物材料、
【導語】微全分析系統自90年代提出以來,目前已發展成為當今世界上最前沿的科技領域之一。憑借其高通量、低消耗的技術優勢,將為生物醫藥、新藥合成篩選、臨床診斷等領域的研究和產業化打開一扇通往美好明天的大門。在第六屆微全分析學術會議期間
微流控芯片最初只是作為納米技術革命的一個補充,在經歷了大肆宣傳及冷落的不同時期后,最終卻實現了商業化生產。微流控芯片最初在美國被稱為“芯片實驗室”,在歐洲被稱為“微整合分析芯片”,隨著材料科學、微納米加工技術和微電子學所取得的突破性進展,微流控芯片也得到了迅速發展,但還是遠不及“摩爾定律“所預測
1、微型及玻璃生物反應器的技術: ① 微流控生物反應器之關鍵技術 —— 微流控技術: 微流控生物反應器之微流控技術是一種精確控制和操控微尺度流體, 以在微納米尺度空間中對流體進行操控為主要特征的科學技術,具有將生物、化學等實驗室的基本功能諸如樣品制備、反應、分離和檢測等縮
微流控芯片是一種把整個化驗室的功能,包括采樣、稀釋、加試劑、反應、分離、檢測等集成在微芯片上,且可以多次使用的裝置。微流控芯片常以硅、玻璃、石英、熱塑性塑料為材料。微流控芯片的基本概念 微流控芯片實驗室,又稱其為芯片實驗室或微流控芯片技術,是把生物、化學、醫學分析過程的樣品制備、反應、分離、檢
微流控芯片的結構由具體研究和分析目的決定,設計和加工微流控芯片片基開展微流控芯片研究的基礎。 微流控芯片的主體結構由上下兩層片基組成(PMMA、PDMS、玻璃等材料),包括微通道,微結構、進樣口,檢測窗等結構單元構成。外圍設備有蠕動泵、微量注射泵、溫控系統、以及紫外、熒光
臨床醫學全面走向個性化醫療診療是當今醫學發展的一大方向,精準的體外診斷技術是正確診療的基本保證。而體外診斷基本主要是基于體液(血液,尿液,唾液)的分析,對于這些體液的操控, 自動化肯定是個大趨勢。那么對于液體的自動化操控,正是我們微流控要干的事情。所以,體外診斷(IVD)里除去試劑的研發,后續的自動
從血細胞中分離循環腫瘤細胞的“聲鉗”什么是微流體?在生物、化學、材料等科學實驗中,經常需要對流體進行操作,如樣品DNA的制備、液相色譜、PCR反應、電泳檢測等操作都是在液相環境中進行。因此,顧名思義,“微流體”即指實驗所用的數量級從毫升、微升級降至納升或皮升級的流體。微流體概念自從20世紀80年代(
微型化、集成化和智能化,是現代科技發展的一個重要趨勢。伴隨著微機電加工系統( MEMS )技術的發展,電子計算機已由當年的”龐然大物”演變成由一個個微小的電路集成芯片組成的便攜系統,甚至是一部微型的智能手機。MEMS技術全稱Micro Electromechanical System , MEM
微流控芯片是一門在微米尺度下研究流體的處理與操控的技術,微流控技術從最初的單一功能的流體控制器件發展到了現在的多功能集成、應用非常廣泛的微流控芯片技術,在分析化學、醫學診斷、細胞篩選、基因分析、藥物輸運等領域得到了廣泛應用。相比于傳統方法,微流控技術具有體積小、檢測速度快、試劑用量小、成本低、多
基于數字流控(DMF)的聚合酶鏈式反應 (PCR)微芯片系統設計 ,主要在于對樣品液滴的運動進行控制和對進行PCR所需要的溫度控制 。設計了一種基于介電潤濕 (Ew0D)原理的數字微流控PCR微芯片,并實現了對芯片不同區域的溫度控制以滿足PCR所需的要 求。基于數字微流控技術的PCR微芯
一、微流控與微流控芯片微流控(Microfluidics)的含義是微尺度下的流體控制,其研究對象是使用微米級通道操控納升級以下微量液體的系統[1-3]。鑒于芯片是實現微流體控制的主要平臺,因而微流控芯片(Microfluidic chip)是微流控的主要研究內容。微流控芯片的制作主要依托于MEMS(
(三)病原微生物檢測病原微生物檢測主要包括病原鑒定和藥物敏感性判定兩個方面。目前,臨床微生物檢測面臨的最大問題就是檢測周期過長。感染性疾病大多病情兇險,需要及時診斷和治療,留給病原檢測的時間窗口只有30分鐘左右。然而,目前的病原微生物鑒定和藥物敏感性判定的典型周期是2-3天,這顯然難以滿足臨床需求。
目錄微流控發展歷史 Tip 微流控特征:在微米級尺度構造出容納流體的通道、反應室和其它功能部件,操控微米體積的流體在微小空間中的運動過程,從而構建完整的化學或生物實驗室。微流控芯片的優勢及應用場景1. 技術優勢2. 應用場景微流控技術介紹1.
化學測量學是化學的測量科學、方法和技術,是化學科學最早、最重要的發展分支之一。其根本任務是獲取物質組成、分布、結構與性質的信息與時空變化規律,并為其他相關學科的發展提供方法和支撐。本文介紹了國家自然科學基金委化學科學部化學測量學“十四五”及中長期發展規劃,為從事相關研究的科研人員、老師和學生提供
微流控分析芯片最初只是作為納米技術革命的一個補充,在經歷了大肆宣傳及冷落的不同時期后,最終卻實現了商業化生產。微流控分析芯片最初在美國被稱為“芯片實驗室”,在歐洲被稱為”微整合分析芯片”,隨著材料科學、微納米加工技術和微電子學所取得的突破性進展,微流控芯片也得到了迅速發展,但還是遠不及“摩爾定律
微流控是指在微尺度上精確控制和操縱流體的技術。20世紀80年代,微流控技術開始出現,最初被稱為"微型全分析系統"( miniaturized totalanalysis systems, mTAS)[1],或者"芯片實驗室"(laboratoryon a ch
微流控分析芯片最初只是作為納米技術革命的一個補充,在經歷了大肆宣傳及冷落的不同時期后,最終卻實現了商業化生產。微流控分析芯片最初在美國被稱為“芯片實驗室”(lab-on-a-chip),在歐洲被稱為“微整合分析芯片”(micrototal analytical systems),隨著 材料科學、
1990年,Manz和Widmer等[1]首先提出微流控芯片的概念,自此微流控芯片技術得到了快速的發展,它具有有效降低試劑和樣品消耗、加快分析速度、提高檢測靈敏度、顯著降低分析成本等優點[2],使得其在各個領域都有廣泛的應用,包括基因分析、蛋白分析、天然產物活性成分的篩選、食品安全分析等。本文主要就
微流控技術被Forbes雜志評為影響人類未來15件最重要的發明之一。直至今日,各國科學家在這一領域做出更加顯著地成績。微流控技術作為當前分析科學的重要發展前沿,在研究與應用方面都取得了飛速的發展。 從Manz和Widmer等人1990年首次提出微型全分析系統(Miniaturized Tot
微流控技術的誕生,是研發人員對自動化以及效率的最大化追求。 上世紀50年代末,美國諾貝爾物理學獎得主Richard Feynman教授預見未來的制造技術將沿著從大到小的途徑發展,他在1959年使用半導體材料將實驗用的機械系統微型化,從而造就了世界上首個微型電子機械系統(Micro-electr
微流控芯片技術與微半導體技術的歷史有著密切的聯系。為了推進阿波羅計劃,美國投資了數十億美元,以便將計算器小型化,從而適合將其發送到太空。 在50年代初,研究人員就開始利用攝影學造了“光刻技術”,用于制造微型晶體管,從而誕生了精細加工和微制作技術。 這些發現和新技術的運用也導致了最后的技術革命,從
微型化、集成化和智能化,是現代科技發展的一個重要趨勢。伴隨著微機電加工系統( MEMS )技術的發展,電子計算機已由當年的”龐然大物”演變成由一個個微小的電路集成芯片組成的便攜系統,甚至是一部微型的智能手機。 MEMS技術全稱Micro Electromechanical System , M
微流控(Microfluidics),是一種精確控制和操控微尺度流體,尤其特指亞微米結構的技術,又稱其為芯片實驗室(Lab-on-a-Chip)或微流控芯片技術。其是把生物、化學、醫學分析過程的樣品制備、反應、分離、檢測等基本操作單元集成到一塊微米尺度的芯片上,自動完成分析全過程。由于在生物、化
一.體外診斷及其小型化 體外診斷(In vitro diagnosis, IVD),顧名思義,主要是指對人體的血液、體液、組織等進行檢測而獲得臨床信息的產品或服務。在我國,由于:1.人口老齡化日漸嚴重;2.傳染病慢性病日漸流行;3.城市化進程中對醫療健康行業需求的劇增;4.政府對醫療保健市場的
2.微流控技術與儀器 (1)近兩年該領域國際上取得了重大突破與進展 微流控(microfluidics)技術是當前正在急速發展的高新技術和科技前沿領域之一,是未來生命科學、化學科學與信息科學發展的重要技術平臺,受到高度重視。微流控技術是在微米尺度結構中操控納升至皮升體積流體的技術與
基于數字流控(DMF)的聚合酶鏈式反應 (PCR)微芯片系統設計 ,主要在于對樣品液滴的運動進行控制和對進行PCR所需要的溫度控制 。設計了一種基于介電潤濕 (Ew0D)原理的數字微流控PCR微芯片,并實現了對芯片不同區域的溫度控制以滿足PCR所需的要 求。基于數字微流控技術的PCR微芯片系統由
微型化、集成化和智能化,是現代科技發展的一個重要趨勢。伴隨著微機電加工系統( MEMS )技術的發展,電子計算機已由當年的”龐然大物”演變成由一個個微小的電路集成芯片組成的便攜系統,甚至是一部微型的智能手機。MEMS技術全稱Micro Electromechanical System , MEM
微流控研究起始于20世紀90年代,至今已經有20余年的發展歷史,其間經歷了基礎理論奠定、單元操作技術發展、小規模集成和大規模集成幾個歷史發展階段。至今,微流控技術發展臻于成熟,已經在多個領域得到認可并被廣為利用,其產業化趨勢亦是愈發明顯。2003年《福布斯》雜志把這項技術評為“影響人類未來15件最重
微流控芯片技術是把生物、化學、醫學分析過程的樣品制備、反應、分離、檢測等基本操作單元集成到一塊微米尺度的芯片上,自動完成分析全過程。由于它在生物、化學、醫學等領域的巨大潛力,已經發展成為一個生物、化學、醫學、流體、電子、材料、機械等學科交叉的嶄新研究領域。 1、微流控芯片的加工方法 微流控芯