DNA指紋的發現歷史
1984年10月星期一,上午9:05分,英國萊斯特大學年輕的生物學家亞歷克·杰弗里斯(Alec Jeffreys)在做實驗時出現了靈光一現的時刻。他發現了每個人的DNA是不同的。盡管人與人之間的DNA的空間結構差異不大,但在DNA序列的某些區域,存在一些會重復的序列,而每個人重復的次數是不同的。杰弗里斯把這些區域稱為“迷你衛星體”。他意識到,通過檢測“迷你衛星體”是可以確定一個人的身份的。Jefferys及其合作者首次將分離的人源小衛星DNA用作基因探針,意思是它同人的指紋一樣是每個人所特有的。 半年后,可能第一次變為現實,DNA指紋技術首次應用在一樁移民案中法醫鑒定。1985年,一個加納移民家庭中最小的兒子返回加納探親,當他回到英國后,海關發現他的護照被涂改了,因此認定這個孩子是“冒牌貨”。警方邀請杰夫里斯對這個孩子進行DNA指紋鑒別。結果證實,從遺傳特征看,這個孩子是這家兒子的可能性是99.997%。這一結果促成了一家......閱讀全文
DNA指紋的發現歷史
1984年10月星期一,上午9:05分,英國萊斯特大學年輕的生物學家亞歷克·杰弗里斯(Alec Jeffreys)在做實驗時出現了靈光一現的時刻。他發現了每個人的DNA是不同的。盡管人與人之間的DNA的空間結構差異不大,但在DNA序列的某些區域,存在一些會重復的序列,而每個人重復的次數是不同的。
DNA-指紋的概念高變區DNA與DNA指紋
人的衛星DNA?或稱隨體DNA?是由一些短的DNA 片段(10bp 左右)多次重復所構成的。重復片段的組成和拷貝數在不同的個體及基因組的不同位置上不一樣。提取不同個體的基因組DNA 后,用其切點能識別序列為4 個堿基而又不切割該重復片段的限制性內切酶在重復片段的兩側切割基因組DNA ,然后將樣品進行
DNA指紋法
DNA Fingerprinting?(David F. Betsch)the theory, procedures and applications??·?????????DNA Fingerprinting (Polyarylamide Gel) (Caltech)BAC DNA sample
DNA連接酶的發現歷史
DNA連接酶是1967年在三個實驗室同時發現的,最初是在大腸桿菌細胞中發現的。它是一種封閉DNA鏈上缺口酶,借助ATP或NAD水解提供的能量催化DNA鏈的5'-PO4與另一DNA鏈的3'-OH生成磷酸二酯鍵。但這兩條鏈必須是與同一條互補鏈配對結合的(T4DNA連接酶除外),而且必須是
DNA連接酶的發現歷史
環形DNA分子的發現使科學家相信一定有一種能連接這種切口的酶存在。首個DNA連接酶(ligase)——大腸桿菌DNA連接酶,是1967年發現的,是大腸桿菌基因編碼。1970年,發現了T4DNA連接酶,由大腸桿菌T4噬菌體基因編碼的。
關于DNA雙螺旋的歷史發現介紹
1953年4月25日,克里克和沃森在英國雜志《自然》上公開了他們的DNA模型。經過在劍橋大學的深入學習后,兩人將DNA的結構描述為雙螺旋,在雙螺旋的兩部分之間,由四種化學物質組成的堿基對扁平環連結著。他們謙遜地暗示說,遺傳物質可能就是通過它來復制的。這一設想的意味是令人震驚的:DNA恰恰就是傳承
DNA指紋的基本介紹
DNA指紋指具有完全個體特異的DNA多態性,其個體識別能力足以與手指指紋相媲美,因而得名。可用來進行個人識別及親子鑒定,同人體核DNA的酶切片段雜交,獲得了由多個位點上的等位基因組成的長度不等的雜交帶圖紋,這種圖紋極少有兩個人完全相同,故稱為"DNA指紋"。
DNA指紋的技術原理
DNA指紋的圖像在X光膠片中呈一系列條紋,很像商品上的條形碼。各種分析方法均以DNA的多態性為基礎,產生具有高度個體特異性的DNA指紋圖譜,由于DNA指紋圖譜具有高度的變異性和穩定的遺傳性,且仍按簡單的孟德爾方式遺傳,成為最具吸引力的遺傳標記。DNA指紋圖譜,開創了檢測DNA多態性(生物的不同個體或
DNA連接酶的發現及研究歷史
DNA連接酶是1967年在三個實驗室同時發現的,最初是在大腸桿菌細胞中發現的。它是一種封閉DNA鏈上缺口酶,借助ATP或NAD水解提供的能量催化DNA鏈的5'-PO4與另一DNA鏈的3'-OH生成磷酸二酯鍵。但這兩條鏈必須是與同一條互補鏈配對結合的(T4DNA連接酶除外),而且必須是
DNA指紋的操作方法
從生物樣品中提取DNA(DNA一般都有部分的降解),可運用PCR技術擴增出高可變位點(如VNTR系統,串聯重復的小衛星DNA等)或者完整的基因組DNA,然后將擴增出的用DNA酶切成DNA片斷,經瓊脂糖凝膠電泳,按分子量大小分離后,轉移至尼龍濾膜上,然后將已標記的小衛星DNA探針與膜上具有互補堿基序列
DNA指紋的主要特點
1.高度的特異性:研究表明,兩個隨機個體具有相同DNA圖形的概率僅3×10^-11;如果同時用兩種探針進行比較,兩個個體完全相同的概率小于5×10^-19。全世界人口約50億,即5×10^9。因此,除非是同卵雙生子女,否則幾乎不可能有兩個人的DNA指紋的圖形完全相同。2.穩定的遺傳性:DNA是人的遺
DNA指紋的操作方法
從生物樣品中提取DNA(DNA一般都有部分的降解),可運用PCR技術擴增出高可變位點(如VNTR系統,串聯重復的小衛星DNA等)或者完整的基因組DNA,然后將擴增出的用DNA酶切成DNA片斷,經瓊脂糖凝膠電泳,按分子量大小分離后,轉移至尼龍濾膜上,然后將已標記的小衛星DNA探針與膜上具有互補堿基
高變區DNA與DNA指紋的關系
人的衛星DNA?或稱隨體DNA?是由一些短的DNA 片段(10bp 左右)多次重復所構成的。重復片段的組成和拷貝數在不同的個體及基因組的不同位置上不一樣。提取不同個體的基因組DNA 后,用其切點能識別序列為4 個堿基而又不切割該重復片段的限制性內切酶在重復片段的兩側切割基因組DNA ,然后將樣品進行
DNA指紋圖譜分析[DNA-Fingerprinting-]
一. 實驗目的1. 掌握DNA指紋圖譜技術的概念、原理和基本操作過程2. 學習DNA的限制性酶切的基本技術3. 掌握瓊脂糖凝膠電泳的基本操作技術,學習利用瓊脂糖凝膠電泳測定DNA片段的長度,并能對實驗結果進行分析。二. 實驗原理1984年英國萊斯特大學的遺傳學家Jefferys及其合作者首次將分離的
簡述DNA指紋的主要特點
1.高度的特異性:研究表明,兩個隨機個體具有相同DNA圖形的概率僅3×10^-11;如果同時用兩種探針進行比較,兩個個體完全相同的概率小于5×10^-19。全世界人口約50億,即5×10^9。因此,除非是同卵雙生子女,否則幾乎不可能有兩個人的DNA指紋的圖形完全相同。 2.穩定的遺傳性:DNA
關于DNA指紋的技術原理介紹
DNA指紋的圖像在X光膠片中呈一系列條紋,很像商品上的條形碼。各種分析方法均以DNA的多態性為基礎,產生具有高度個體特異性的DNA指紋圖譜,由于DNA指紋圖譜具有高度的變異性和穩定的遺傳性,且仍按簡單的孟德爾方式遺傳,成為最具吸引力的遺傳標記。 DNA指紋圖譜,開創了檢測DNA多態性(生物的不
DNA指紋的生物學上的應用
DNA指紋技術能夠從DNA分子水平給每個玉米品種一個“身份證號碼”,以其準確可靠、簡單快速、易于自動化的優點越來越多的應用于品種管理。 玉米DNA指紋,是從DNA分子水平給予每個玉米品種一個能夠準確表明其身份的代碼,就像每個人都有一張身份證,DNA指紋就是玉米的“分子身份證”。? 玉米的‘分
DNA-指紋的圖譜相關內容
取決于所用探針的核心序列(即重復序列中的重復單位)。目前所用的探針有兩種,即探針33.15 。其核心序列為AGAGGTGGGCAGGTGG, 和33.6 ,即AGGGCTGGAGG 。這就是說這兩種序列在人體基因組中不同的位置上分別重復不同的次數,而在不同個體的基因組中,對應位置上這兩種核心序列
分子生態學詞匯?DNA指紋
DNA指紋指具有完全個體特異的DNA多態性,其個體識別能力足以與手指指紋相媲美,因而得名。可用來進行個人識別及親子鑒定,同人體核DNA的酶切片段雜交,獲得了由多個位點上的等位基因組成的長度不等的雜交帶圖紋,這種圖紋極少有兩個人完全相同,故稱為"DNA指紋"。
DNA指紋圖譜分析(圖)
一. 實驗目的1. 掌握DNA指紋圖譜技術的概念、原理和基本操作過程2. 學習DNA的限制性酶切的基本技術3. 掌握瓊脂糖凝膠電泳的基本操作技術,學習利用瓊脂糖凝膠電泳測定DNA片段的長度,并能對實驗結果進行分析。二. 實驗原理1984年英國萊斯特大學的遺傳學家Jefferys及其合作者首次將分離的
高變區DNA與DNA指紋的相關內容
人的衛星DNA 或稱隨體DNA 是由一些短的DNA 片段(10bp 左右)多次重復所構成的。重復片段的組成和拷貝數在不同的個體及基因組的不同位置上不一樣。提取不同個體的基因組DNA 后,用其切點能識別序列為4 個堿基而又不切割該重復片段的限制性內切酶在重復片段的兩側切割基因組DNA ,然后將樣品
DNA指紋在生物學領域的應用
DNA指紋技術能夠從DNA分子水平給每個玉米品種一個“身份證號碼”,以其準確可靠、簡單快速、易于自動化的優點越來越多的應用于品種管理。玉米DNA指紋,是從DNA分子水平給予每個玉米品種一個能夠準確表明其身份的代碼,就像每個人都有一張身份證,DNA指紋就是玉米的“分子身份證”。玉米的‘分子身份證’則是
細胞系的多位點DNA指紋檢測
細胞系 Southern 印跡 DNA 的制備 經標記的 M13 噬菌體 DNA 的制備 雜交 ? ? ? ? ? ? 實驗方法原理 細胞中提取的 DN
DNA指紋在法醫學領域的應用
DNA指紋技術具有許多傳統法醫檢查方法不具備的優點,如它從四年前的精斑、血跡樣品中,仍能提取出DNA來作分析;如果用線粒體DNA檢查,時間還將延長。此外千年古尸的鑒定,在俄國革命時期被處決沙皇尼古拉的遺骸,以及最近在前南地區的一次意外事故中機毀人亡的已故美國商務部長布朗及其隨行人員的遺骸鑒定,都采
DNA測序的發展歷史
70年代末,WalterGilbert發明化學法、FrederickSanger發明雙脫氧終止法手動測序,同位素標記80年代中期,出現自動測序儀(應用雙脫氧終止法原理)、熒光代替同位素,計算機圖象識別90年代中期,測序儀重大改進、集束化的毛細管電泳代替凝膠電泳2001年完成人類基因組框架圖
核酶的發現歷史
1982年,美國科學家T.Cech和他的同事在對"四膜蟲編碼rRNA前體的DNA序列含有間隔內含子序列"的研究中發現,自身剪接內含子的RNA具有催化功能,并因此獲得了1989年諾貝爾化學獎。為了與酶(enzyme)區分,Cech將它命名為ribozyme,其中文譯名"核酶"已得到大多數人的認可。因為
核酶的發現歷史
1967年,Carl Woese, Francis Crick和 Leslie Orgel 首次提出RNA可以作為催化劑,理由是RNA可以形成復雜的二級結構。1978年,耶魯大學教授Sidney Altman正在研究細菌的tRNA分子的加工方式,他分離出一種叫做RNase P的酶,可以將前體tRNA
乙烯的發現歷史
中國古代就發現將果實放在燃燒香燭的房子里可以促進采摘果實的成熟。19世紀德國人發現在泄露的煤氣管道旁的樹葉容易脫落。第一個發現植物材料能產生一種氣體,并對鄰近植物能產生影響的是卡曾斯,他發現橘子產生的氣體能催熟與其混裝在一起的香蕉。直到1934年甘恩(Gane)才首先證明植物組織確實能產生乙烯。隨著
核酸的發現歷史
核酸最早于1869年由瑞士醫生和生物學家弗雷德里希·米歇爾分離獲得,稱為Nuclein??。在19世紀80年代早期,德國生物化學學家,1910年諾貝爾生理和醫學獎獲得者科塞爾進一步純化獲得核酸,發現了它的強酸性。他后來也確定了核堿基。1889年,德國病理學家Richard Altmann創造了核酸這
病毒的歷史發現
關于病毒所導致的疾病,早在公元前二至三個世紀的印度和中國就有了關于天花的記錄。但直到19世紀末,病毒才開始逐漸得以發現和鑒定。1884年,法國微生物學家查理斯·尚柏朗(Charles Chamberland)發明了一種細菌無法濾過的過濾器(Chamberland氏燭形濾器,其濾孔孔徑小于細菌的大