由于該反應一次生成兩個碳碳鍵和最多四個相鄰的手性中心,所以在合成中很受重視。如果一個合成設計上使用了狄爾斯–阿爾德反應,則可以大大減少反應步驟,提高了合成的效率。狄爾斯-阿爾得反應在有機合成中有重要用途,是合成六元環狀化合物的重要方法。把反應中的碳原子換成雜原子,也能進行類似的反應,得到含雜原子的六元環化合物。氮雜雙烯用亞胺與雙烯合成四氫吡啶類物質的環加成反應。這種有機化學反應是狄爾斯–阿爾德反應的變種,氮原子取代了原反應中雙烯或雙烯親和物中亞甲基或次甲基。此反應反應物中的亞胺往往是由胺和甲醛在原位產生的,比如環戊二烯與苯甲胺生成氮雜降冰片烯的反應,反應過程如下圖2所示: 圖2 氮雜降冰片烯合成反應路易斯酸催化科里對狄爾斯–阿爾德反應也有很大的貢獻,發明了一種路易斯酸催化的不對稱狄爾斯–阿爾德反應。在其合成前列腺素過程中,科里試圖利用環戊二烯做狄爾斯–阿爾德反應來構筑前列腺素的母環,由此發明了不穩定烯酮的替代試劑。丹尼......閱讀全文
由于該反應一次生成兩個碳碳鍵和最多四個相鄰的手性中心,所以在合成中很受重視。如果一個合成設計上使用了狄爾斯–阿爾德反應,則可以大大減少反應步驟,提高了合成的效率。狄爾斯-阿爾得反應在有機合成中有重要用途,是合成六元環狀化合物的重要方法。把反應中的碳原子換成雜原子,也能進行類似的反應,得到含雜原子的六
狄爾斯–阿爾德反應是典型的[4+2] 型的環加成反應,其反應機理一般認為,在反應時兩反應物彼此靠近,相互作用, 形成一個環狀過濾態。然后逐漸轉化為產物分子,即舊鍵的斷裂與新鍵的形成是相互協調地在同一步驟中完成的—協同反應,無中間體生成。反應圖如下所示:證明,1,3-丁二烯和乙烯的反應是一個簡單而典型
狄爾斯–阿爾德反應是一種有機反應,共軛雙烯與取代烯烴(一般稱為親雙烯體)反應生成取代環己烯。該反應用很少能量就可以合成六元環,是有機化學合成反應中非常重要的碳碳鍵形成的手段之一,也是現代有機合成里常用的反應之一。反應有豐富的立體化學呈現,兼有立體選擇性、立體專一性和區域選擇性等。該反應是可逆反應,正
在加熱條件下,共軛二烯烴與含碳碳雙鍵或碳碳三鍵的化合物進行1,4-環加成反應,生成六元環烯烴,反應也經過一個環狀過渡態。成環反應需要的溫度比開環反應的溫度低些。這個反應稱做雙烯合成反應,是由德國化學家狄爾斯和阿爾得發現的,又稱狄爾斯-阿爾得反應。1928年德國化學家奧托·迪爾斯和他的學生庫爾特·阿爾
?這種重排是由迪爾斯-阿爾德反應的逆向過程所造成的鍵斷裂引起的重排。具有環己烯緯構(含有內雙鍵)類型的化合物可發生RDA裂解。結果一般都形成一個共軛二烯自由基正離子及一個烯烴中性碎片。如下圖所示。
雙烯合成又稱狄爾斯-阿爾德(Diels-Alder反應)。共軛二烯烴和某些具有碳碳雙鍵、三鍵的不飽和化合物進行1,4一加成,生成環狀化合物的反應稱為雙烯合成反應。狄爾斯一阿爾德反應是協同反應,即舊鍵的斷裂和新鍵的形成是相互協調地在同一步驟中完成的。在光照或加熱的條件下,反應物分子彼此靠近,互相作用,
北京大學化學與分子工程學院陳鵬課題組長期致力于發展活細胞內的外源化學反應,特別是生物正交消除反應的提出,豐富了生物正交反應的內容。最近,他們首次在活細胞的蛋白質上實現了“逆電子需求的狄爾斯—阿爾德反應”(簡稱“狄—阿”反應),并將其應用于蛋白質酶的激活。基于對“(逆)狄—阿”反應的解析,他們發現
北京高壓科學研究中心李闊、鄭海燕課題組通過對苯—六氟苯1:1共晶進行壓力誘導聚合反應,得到了短程有序的氟代石墨烷結構,并對其反應機理進行了詳細研究。相關成果日前發表于《德國應用化學》。 研究人員綜合利用世界上多臺高壓中子衍射儀,精確測定了苯—六氟苯共晶在臨界反應壓力(20萬個大氣壓)下的晶體結
由于本病的病程長短不一,病變累及部位不同,治療藥物劑量不同,疾病引起并發癥不同以及缺乏對照觀察等,本病治療效果的評價比較困難,本病的治療主要包括非甾體類抗炎藥、糖皮質激素、細胞毒藥物、慢作用藥物及生物制劑治療。 1.非甾體類抗炎藥 非甾體類抗炎藥對部分患者能取得良好療效,如控制發熱,減輕全身癥
儀器內構 一道準直光束被第一塊半鍍銀鏡分裂成兩道光束,稱為“樣品光束”與“參考光束”。這兩道光束分別被兩塊鏡子反射后,又通過同樣的第二塊半鍍銀鏡,然后進入檢測器。 除了最后一塊半鍍銀鏡以外,所有全鍍銀鏡與半鍍銀鏡的表面都是面對入射光束。最后一塊半鍍銀鏡的表面是面對透射過第一塊半鍍銀鏡的光束。