<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • Antpedia LOGO WIKI資訊

    關于標記基因的基本介紹

    標記基因,原本是基因工程的專屬名詞,但是它已經成為一種基本的實驗工具,廣泛應用于分子生物學、細胞生物學、發育生物學等方面的研究。 標記基因是一種已知功能或已知序列的基因,能夠起著特異性標記的作用。在基因工程意義上來說,它是重組DNA載體的重要標記,通常用來檢驗轉化成功與否;在基因定位意義上來說,它是對目的基因進行標志的工具,通常用來檢測目的基因在細胞中的定位。......閱讀全文

    關于標記基因的基本介紹

      標記基因,原本是基因工程的專屬名詞,但是它已經成為一種基本的實驗工具,廣泛應用于分子生物學、細胞生物學、發育生物學等方面的研究。  標記基因是一種已知功能或已知序列的基因,能夠起著特異性標記的作用。在基因工程意義上來說,它是重組DNA載體的重要標記,通常用來檢驗轉化成功與否;在基因定位意義上來說

    標記基因的基本介紹

      標記基因,原本是基因工程的專屬名詞,但是它已經成為一種基本的實驗工具,廣泛應用于分子生物學、細胞生物學、發育生物學等方面的研究。  標記基因是一種已知功能或已知序列的基因,能夠起著特異性標記的作用。在基因工程意義上來說,它是重組DNA載體的重要標記,通常用來檢驗轉化成功與否;在基因定位意義上來說

    關于基因探針的標記介紹

      為了確定探針是否與相應的基因組DNA雜交,有必要對探針加以標記,以便在結合部位獲得可識別的信號,通常采用放射性同位素32P標記探針的某種核苷酸α磷酸基。但近年來已發展了一些用非同位素如生物素-親合素系統、地高辛配體等作為標記物的方法。非同位素標記的優點是保存時間較長,而且避免了同位素的污染。最常

    關于基因探針的標記介紹

      為了確定探針是否與相應的基因組DNA雜交,有必要對探針加以標記,以便在結合部位獲得可識別的信號,通常采用放射性同位素32P標記探針的某種核苷酸α磷酸基。但近年來已發展了一些用非同位素如生物素-親合素系統  、地高辛配體等作為標記物的方法。非同位素標記的優點是保存時間較長,而且避免了同位素的污染。

    關于標記基因的分類介紹

      引入“選擇基因”和“報告基因”的概念  選擇基因和報告基因都可以看做是標記基因,都起著標記目的基因是否成功轉化的作用,但是它們又有著各自的特點。  選擇基因(又稱選擇標記基因),主要是一類編碼可使抗生素或除草劑失活的蛋白酶基因,這種基因在執行其選擇功能時,通常存在檢測慢(蛋白酶作用需要時間)、依

    關于基因探針標記的方法介紹

      探針的標記方式有放射性標記和非放射性標記。標記物質有放射性元素(如32P等)和非放射性物質(如生物素、地高辛等)。32P是最常用的核苷酸標記同位素,被標記的dNTP本身就帶有磷酸基團,便于標記。特點是比活性高,可達9000Ci/mmol;發射的β射線能量高。用它標記的探針自顯影時間短,靈敏度高。

    關于顯性標記的基本內容介紹

      分子標記中,顯性和共顯性,對等位基因而言,即指所擴增的PCR產物(DNA片段)。像RAPD、ISSR等顯性標記,PCR產物無法確切確定,因而無法區分雜合體(heterozygosity),只能按有帶無帶進行分析,記錄為0/1;而SSR等共顯性標記,則能區分雜合體,即二倍體及多倍體染色體DNA上的

    關于微衛星標記的基本信息介紹

      微衛星標記(microsatellite),又被稱為短串聯重復序列(short tandem repeats,STRs)或簡單重復序列(simple sequence repeats,SSR),是均勻分布于真核生物基因組中的簡單重復序列,由2~6個核苷酸的串聯重復片段構成,由于重復單位的重復次數

    關于探針標記的基本簡介

      探針是能與特異靶分子反應并帶有供反應后檢測的合適標記物的分子。利用核苷酸堿基順序互補的原理,用特異的基因探針即識別特異堿基序列的有標記的一段單鏈DNA(或RNA)分子,與被測定的靶序列互補,以檢測被測靶序列的技術叫核酸探針技術。探針制備就是將目的基因進行標記。特異性探針有三種形式——cDNA、R

    基因探針標記的介紹

      探針是能與特異靶分子反應并帶有供反應后檢測的合適標記物的分子。利用核苷酸堿基順序互補的原理,用特異的基因探針即識別特異堿基序列的有標記的一段單鏈DNA(或RNA)分子,與被測定的靶序列互補,以檢測被測靶序列的技術叫核酸探針技術。探針制備就是將目的基因進行標記。特異性探針有三種形式——cDNA、R

    關于結構基因的基本介紹

      結構基因是編碼蛋白質或RNA的基因。細菌的結構基因一般成簇排列,多個結構基因受單一啟動子共同控制,使整套基因或都表達或者都不表達。結構基因編碼大量功能各異的蛋白質,其中有組成細胞和組織器官基本成分的結構蛋白、有催化活性的酶和各種調節蛋白等。

    關于基因擴增的基本介紹

      基因擴增(gene amplification)是指某一個特定基因的拷貝數選擇性地增加而其它基因的拷貝數并未按比例增加的過程。  基因擴增產生的可能原因:  1)由錯誤的DNA復制和修復導致的基因復制;  2)自私遺傳元件偶然捕獲而導致的DNA重復;  3)人工聚合酶鏈式反應(PCR)擴增。

    關于跳躍基因的基本介紹

      跳躍基因或轉座子:一段可以從原位上單獨復制或斷裂下來,環化后插入另一位點,并對其后的基因起調控作用的DNA序列。 美國約翰斯·霍普金斯大學的科學家已經成功地將一種普通的人類"跳躍基因"轉化成一種運動速度比普通老鼠和人類細胞中的跳躍基因快幾百倍的超級跳躍基因。

    關于基因家族的基本介紹

      基因家族(gene family),是來源于同一個祖先,由一個基因通過基因重復而產生兩個或更多的拷貝而構成的一組基因,它們在結構和功能上具有明顯的相似性,編碼相似的蛋白質產物, 同一家族基因可以緊密排列在一起,形成一個基因簇,但多數時候,它們是分散在同一染色體的不同位置,或者存在于不同的染色體上

    關于基因轉錄的基本介紹

      基因轉錄是在細胞核和細胞質內進行的。它是指以DNA的一條鏈為模板,按照堿基互補配對原則,在RNA聚合酶作用下合成RNA的過程。基因轉錄有正調控和負調控之分。  如細菌基因的負調控機制是當一種阻遏蛋白(repressor protein)結合在受調控的基因上時,基因不表達;而從靶基因上去除阻遏蛋白

    關于基因剪接的基本介紹

      基因剪接是通過一些酶學操作使一條DNA分子與另一條DNA分子相連。即在mRNA成熟期,切除基因的內含子,連接基因的外顯子的過程,稱為基因剪接。而天然基因的某些片段被合成的DNA鏈所取代或連成整體的過程稱為基因剪輯。一個基因為它的等位基因所替換,而其他基因則保持不變稱為基因置換。

    關于基因調控的基本介紹

      生物體內控制基因表達的機制。基因表達的主要過程是基因的轉錄和信使核糖核酸(mRNA)的翻譯。基因調控主要發生在3個水平上,即:  ①DNA修飾水平、RNA轉錄的調控、和mRNA翻譯過程的控制;  ②微生物通過基因調控可以改變代謝方式以適應環境的變化,這類基因調控一般是短暫的和可逆的;  ③多細胞

    關于src基因的基本介紹

      src基因(sarcoma gene)即雞肉瘤病毒(RSV)基因組中的基因,可使雞產生肉瘤。是第一個鑒定的病毒癌基因。  1970年,Peter Vogt分離到一種Rous 病毒的突變體,該突變病毒能夠感染細胞并進行復制,但是不能引起細胞轉化并致癌。由于該突變體,只是喪失了將正常細胞轉化為癌細胞

    關于基因起源的基本介紹

      基因就是編譯氨基酸的密碼子,因此,密碼子的起源就是基因的起源。除了少數的不同之外,地球上已知生物的遺傳密碼均非常接近;因此根據演化論,遺傳密碼應在生命歷史中很早期就出現。現有的證據表明遺傳密碼的設定并非是隨機的結果,對此有以下的可能解釋: [6]  韋斯(Carl Richard Woese)認

    關于自殺基因的基本介紹

      自殺基因(suicide gene),是指將某些病毒或細菌的基因導入靶細胞中,其表達的酶可催化無毒的藥物前體轉變為細胞毒物質,從而導致攜帶該基因的受體細胞被殺死,此類基因稱為自殺基因。  應用自殺基因常用來治療腫瘤和感染性疾病。例如將在肝癌細胞中可表達AF基因的調控區與水痘一帶狀瘡疹病毒中的胸苷

    關于重疊基因的基本介紹

      重疊基因是在1977年發現的。早在1913年A.H.斯特蒂文特已在果蠅中證明了基因在染色體上作線狀排列,20世紀50年代對基因精細結構和順反位置效應等研究的結果也說明基因在染色體上是一個接著一個排列而并不重疊。但是1977年F.桑格在測定噬菌體ΦX174的DNA的全部核苷酸序列時,卻意外地發現基

    關于微衛星標記的基本簡介

      微衛星DNA 是真核生物基因組重復序列中的主要組成部分,主要由串聯重復單元組成,每單元長度在1-10bp 之間,1 個SSR 的總長度可達幾十到幾百個bp。每個微衛星DNA 都由核心序列和側翼序列組成,其核心序列呈串聯重復排列。側翼DNA 序列位于核心序列的兩端,為保守的特異單拷貝序列,能使微衛

    基因探針的標記方法介紹

    為了確定探針是否與相應的基因組DNA雜交,有必要對探針加以標記,以便在結合部位獲得可識別的信號,通常采用放射性同位素32P標記探針的某種核苷酸α磷酸基。但近年來已發展了一些用非同位素如生物素、地高辛配體等作為標記物的方法。但都不及同位素敏感。非同位素標記的優點是保存時間較長,而且避免了同位素的污染。

    基因探針的標記方法介紹

      ①缺口平移標記法。利用的是DNA聚合酶I能修復DNA鏈的功能。該法先由DNaseI在DNA雙鏈上隨機切出切口,然后DNA聚合酶I沿缺口水解5′端核苷酸,同時在3′端修復加入被標記核苷酸,切口平行推移。缺口平移法快速、簡便、成本相對較低、比活性相對較高、標記均勻,多用于大分子DNA標記,(>100

    關于基因內重排的基本介紹

      一個結果是錯位鏈最末端的堿基率先復性,然后局部合成空缺的堿基,經過修復形成一個或幾個插入重復單位。因為是發生在同 -DNA分子內的單鏈插入,故這種基因的轉移是一種基因內轉換形式。基因內轉換重排可以反復出現,每出現一次就增加一段插入序列,所以這種錯位復性及修復方式在小衛星座位一般都是增加了重復單位

    關于病毒癌基因的基本介紹

      病毒癌基因(viral oncogene):是存在于致癌DNA病毒和一部分逆轉錄病毒基因組中能使靶細胞發生惡性轉化的基因。它不編碼病毒結構成分,對病毒無復制作用,但是當受到外界的條件激活時可產生誘導腫瘤發生的作用。

    關于基因庫的基本介紹

      基因庫(gene pool)是一個群體中所有個體的全部基因的總和。有性生殖支撐了一種獨特的基因庫構建與運行模式,減數分裂通過修修補補、程序性突變(如復制錯誤、缺失、插入、重復等,這些與輻射誘變等比較,相對溫和)等增加種群內基因的多樣性以及等位基因的多態性,并分散保存于種群之中(種群規模越大,容納

    關于等位基因的基本介紹

      位于一對同源染色體的相同位置上控制某一性狀的不同形態的基因。不同的等位基因產生例如發色或血型等遺傳特征的變化。等位基因控制相對性狀的顯隱性關系及遺傳效應,可將等位基因區分為不同的類別。在個體中,等位基因的某個形式(顯性的)可以比其他形式(隱性的)表達得多。等位基因(gene)是同一基因的另外“版

    關于單體型基因的基本介紹

      單體型(Haplotype,haploid genotype)是個體組織中,完全遺傳自父母雙方中一個親本的一組等位基因,又稱單倍體型或單元型。例如:三對雙等位基因的單體型共有8種。系統的研究表明一擁有特定SNP的個體常常在附近某一特定變異位點擁有特定等位基因,這種關系叫做連鎖不平衡(linkag

    關于免疫應答基因的基本介紹

      為支配免疫反應性的基因的總稱。廣義的也包括免疫球蛋白基因,但一般指在它之外的基因。最重要的是指在主要組織相容性抗原基因復合體(MHC)內存在的Ir基因(Ir genes)。表達lr gene的方式多種多樣,支配阻遏細胞和輔助細胞(helper cell)機能的表達或由巨噬細胞向T細胞提供抗原。在

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频