<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>

  • 激光拉曼光譜學的概念

    中文名稱激光拉曼光譜學英文名稱laser Raman spectroscopy定 義采用激光作入射光的拉曼光譜學。應用學科生物化學與分子生物學(一級學科),方法與技術(二級學科)......閱讀全文

    激光拉曼光譜學的概念

    中文名稱激光拉曼光譜學英文名稱laser Raman spectroscopy定  義采用激光作入射光的拉曼光譜學。應用學科生物化學與分子生物學(一級學科),方法與技術(二級學科)

    激光拉曼光譜學的定義

    中文名稱激光拉曼光譜學英文名稱laser Raman spectroscopy定  義采用激光作入射光的拉曼光譜學。應用學科生物化學與分子生物學(一級學科),方法與技術(二級學科)

    拉曼光譜學簡介

    拉曼光譜學是用來研究晶格及分子的振動模式、旋轉模式和在一系統里的其他低頻模式的一種分光技術。拉曼散射為一非彈性散射,通常用來做激發的激光范圍為可見光、近紅外光或者在近紫外光范圍附近。激光與系統聲子做相互作用,導致最后光子能量增加或減少,而由這些能量的變化可得知聲子模式。這和紅外光吸收光譜的基本原理相

    激光增強拉曼散射的概念和原理

    中文名稱激光增強拉曼散射英文名稱laser stimulated Raman scattering定  義當激光的頻率接近或等于被測分子的電子吸收頻率時,某一條或幾條特定的拉曼線強度會急劇增強(一般會增強100~1 000 000倍)的散射現象。應用學科生物化學與分子生物學(一級學科),方法與技術(

    什么是拉曼光譜學?

    ? 在拉曼散射中,拉曼譜線起源于散射物質分子的振動和轉動,反映了分子的內部結構和運動,通過拉曼光譜可對化合物進行定性和定量分析、測定分子的振動和轉動頻率及有關常數、了解分子內部或分子間的作用力、推斷分子結構的對稱性和幾何形狀等。拉曼光譜的應用范圍遍及物理學、化學、生物學的許多領域。新型光源激光的應用

    拉曼激光器的居量反轉的概念

    居量反轉(英語:Population inversion),又譯為群數反轉、密數反轉、粒子數反轉、反轉分布,為一個物理學名詞,在統計力學中經常被使用。居量反轉即在一個系統(例如一群原子或分子)中,處在激發狀態的成員數量比起處于較低能級狀態的成員更多。讓標準激光進入能夠運作的狀態的過程中,產生居量反轉

    拉曼效應的概念

    拉曼效應(Raman scattering),也稱拉曼散射,1928年由印度物理學家拉曼發現,指光波在被散射后頻率發生變化的現象。1930年諾貝爾物理學獎授予當時正在印度加爾各答大學工作的拉曼(Sir Chandrasekhara Venkata Raman,1888——1970),以表彰他研究了光

    拉曼效應的概念

    拉曼效應(Raman scattering),也稱拉曼散射,1928年由印度物理學家拉曼發現,指光波在被散射后頻率發生變化的現象。1930年諾貝爾物理學獎授予當時正在印度加爾各答大學工作的拉曼(Sir Chandrasekhara Venkata Raman,1888——1970),以表彰他研究了光

    拉曼位移的概念

    拉曼位移是指散射光頻率與入射光頻率差值。

    激光拉曼光譜原理

       拉曼光譜法是研究化合物分子受光照射后所產生的散射,散射光與入射光能級差和化合物振動頻率、轉動頻率的關系的分析方法。 與紅外光譜類似,拉曼光譜是一種振動光譜技術。所不同的是,前者與分子振動時偶極矩變化相關,而拉曼效應則是分子極化率改變的結果,被測量的是非彈性的散射輻。    激光拉曼光譜原理:

    拉曼激光安全眼鏡

    不影響可視性的激光保護拉曼激光安全眼鏡能提供出色的激光防護,同時又不會犧牲眼鏡的可視性或舒適度。這款眼鏡適合直接觀測和漫觀測,符合EN207標準并通過了CE認證,采用吸收染料制成,能最大限度提升顏色識別度和可見光透射度(VLT)。可提供適合各種拉曼激光的型號,包括532nm、638nm、785nm、

    激光拉曼光譜定義

    拉曼光譜法是研究化合物分子受光照射后所產生的散射,散射光與入射光能級差和化合物振動頻率、轉動頻率的關系的分析方法。 與紅外光譜類似,拉曼光譜是一種振動光譜技術。所不同的是,前者與分子振動時偶極矩變化相關,而拉曼效應則是分子極化率改變的結果,被測量的是非彈性的散射輻。定義:拉曼光譜法是研究化合物分子受

    激光拉曼光譜的原理

    一定波長的電磁波作用于被研究物質的分子,引起分子相應能級的躍遷,產生分子吸收光譜。引起分子電子能級躍遷的光譜稱電子吸收光譜,其波長位于紫外~可見光區,故稱紫外-可見光譜。電子能級躍遷的同時伴有振動能級和轉動能級的躍遷。引起分子振動能級躍遷的光譜稱振動光譜,振動能級躍遷的同時伴有轉動能級的躍遷。拉曼散

    激光拉曼光譜的原理

    一定波長的電磁波作用于被研究物質的分子,引起分子相應能級的躍遷,產生分子吸收光譜。引起分子電子能級躍遷的光譜稱電子吸收光譜,其波長位于紫外~可見光區,故稱紫外-可見光譜。電子能級躍遷的同時伴有振動能級和轉動能級的躍遷。引起分子振動能級躍遷的光譜稱振動光譜,振動能級躍遷的同時伴有轉動能級的躍遷。拉曼散

    拉曼效應的能級概念

    能級概念圖1 上能級示意圖

    拉曼光譜學——分子結構研究的方法

      拉曼光譜是一種散射光譜。拉曼光譜分析法是基于印度科學家C.V.拉曼(Raman)所發現的拉曼散射效應,對與入射光頻率不同的散射光譜進行分析以得到分子振動、轉動方面信息,并應用于分子結構研究的一種分析方法。現在,拉曼光譜的應用范圍遍及化學、物理學、生物學和醫學等各個領域,對于純定性分析、高度定量分

    激光顯微共焦拉曼光譜儀的拉曼效應

      光散射是自然界常見的現象。晴朗的天空之所以呈藍色、早晚東西方的空中之所以出現紅色霞光等,都是由于光發生散射而形成了不同的景觀。拉曼光譜是一種散射光譜。在實驗室中,我們通過一個很簡單的實驗就能觀察到拉曼效應。在一暗室內,以一束綠光照射透明液體,例如戊烷,綠光看起來就像懸浮在液體上。若通過對綠光或藍

    激光拉曼和傅里葉變換拉曼光譜儀的比較

    拉曼光譜儀按照激發光源與分光系統的不同可分為兩大類:色散型拉曼光譜儀 (簡稱激光拉曼) 和傅里葉變換拉曼光譜儀 (簡稱傅變拉曼)。前者采用短波的可見光激光器激發、光柵分光系統,近年向著更短的紫外激光器發展;后者則采用長波的近紅外激光器激發、邁克爾遜干涉儀調制分光等技術。激光拉曼和傅變拉曼由于在儀器的

    激光拉曼光譜儀

    激光拉曼光譜儀是一個集合了激光光譜學、精密機械和微電子系統的綜合測量體系。其最終結果是獲得散射介質在一定方向上具有一定偏振態的散射光強隨頻率分布的譜圖。 激光拉曼光譜儀分析是一種非破壞性的微區分析手段,液體、粉末及各種固體樣品均不需特殊處理即可用于拉曼光譜的測定。拉曼光譜可以單獨,或與其他技術(如X

    激光拉曼光譜法

    拉曼光譜能夠準確地測定水合物中不同的籠中的氣體分子的拉曼振動強度,且拉曼強度與分子的數量成正比。由于水合物中不同類型的籠子的大小不同,氣體分子與組成籠子的水分子之間的作用力不同,故在不同籠中的分子的拉曼位移是不同的。由于I型水合物的大籠(51262)數量是小籠(512)的3倍,Ⅱ型水合物的大籠(51

    激光拉曼光譜法

    拉曼光譜能夠準確地測定水合物中不同的籠中的氣體分子的拉曼振動強度,且拉曼強度與分子的數量成正比。由于水合物中不同類型的籠子的大小不同,氣體分子與組成籠子的水分子之間的作用力不同,故在不同籠中的分子的拉曼位移是不同的。由于I型水合物的大籠(51262)數量是小籠(512)的3倍,Ⅱ型水合物的大籠(51

    綠松石的激光拉曼光譜研究

    摘 要 對湖北、安徽地區綠松石進行了激光拉曼光譜測試分析。結果表明, 綠松石中H2O , OH - 及PO3 -4的基團振動是導致其激光拉曼光譜形成的主要原因。3 510~3 440 cm- 1 的譜峰是由ν(OH) 伸縮振動所致,其中ν(OH) 振動導致的強拉曼特征譜峰在3 470 cm- 1附近

    拉曼奈斯衍射的概念

    中文名稱拉曼-奈斯衍射英文名稱Raman-Nath diffraction定  義當超聲波頻率較低,光線平行于聲波波面入射時產生的與普通光學光柵衍射類似的衍射現象。應用學科機械工程(一級學科),光學儀器(二級學科),激光器件和激光設備-激光技術(三級學科)

    從微區拉曼到現代的激光共聚焦顯微拉曼

      拉曼微區探針(微區拉曼)是把顯微鏡和拉曼光譜聯系起來,測得的拉曼光譜具有較高的精確性,可以用來進行表面光譜學研究,發現與組分化學性質有關的表面均一性。  拉曼微區探針的概念最早是由Tomas Hirshfled在1969年提出的。圖1給出了第一臺成功的拉曼顯微鏡示意圖。它把常規顯微鏡和配有高靈敏

    簡介激光顯微共焦拉曼光譜儀拉曼位移

      在透明介質散射光譜中,入射光子與分子發生非彈性散射,分子吸收頻率為ν0 的光子,發射ν0-ν1的光子,同時電子從低能態躍遷到高能態(斯托克斯線);分子吸收頻率為ν0的光子,發射ν0+ν1的光子,同時電子從高能態躍遷到低能態(反斯托克斯線)。靠近瑞利散射線的兩側出現的譜線稱為小拉曼光譜;遠離瑞利散

    拉曼不同波段激光優缺點

    不同波段激光優缺點理論上,紫外拉曼光譜和可見光拉曼光譜沒有什么不同之處。但對于某些特定樣品來說,紫外激光與樣品相互作用的方式與可見激光不同,如表2中示。此外,紫外和近紅外都可抑制熒光但是原理上是有差別的。如圖2所示,因為在紫外激發下拉曼信號和熒光信號在不同的光譜區域,不會受到干擾。而使用可見激光激發

    激光拉曼光譜儀(圖)

    一、拉曼散射的發展歷史1928年,印度物理學家拉曼用水銀燈照射苯液體,發現了新的輻射譜線:在入射光頻率ω0的兩邊出現呈對稱分布的,頻率為ω0-ω和ω0+ω的明銳邊帶,這是屬于一種新的分子輻射,稱為拉曼散射,其中ω是介質的元激發頻率。拉曼因發現這一新的分子輻射和所取得的許多光散射研究成果而獲得了193

    激光拉曼光譜法的應用

    激光拉曼光譜法的應用有以下幾種:在有機化學上的應用、在高聚物上的應用、在生物方面上的應用、在表面和薄膜方面的應用。 在有機化學上的應用拉曼光譜在有機化學方面主要是用作結構鑒定的手段,拉曼位移的大小、強度及拉曼峰形狀是確定化學鍵、官能團的重要依據。利用偏振特性,拉曼光譜還可以作為順反式結構判斷的依據。

    激光共焦拉曼光譜的原理

    激光共焦拉曼光譜是用來分析物質組分﹑結構等的一種有效光譜分析手段,其原理是入射激光會引起分子(或晶格)產生振動而損失(或獲得)部分能量,致使散射光頻率發生變化對散射光的分析,即拉曼光譜分析,可以探知分子的組分,結構及相對含量等,因此被廣泛成為分子探針技術。該儀器是在1960后產生的,他的光源采用激光

    激光共焦拉曼光譜的原理

    激光共焦拉曼光譜是用來分析物質組分﹑結構等的一種有效光譜分析手段,其原理是入射激光會引起分子(或晶格)產生振動而損失(或獲得)部分能量,致使散射光頻率發生變化對散射光的分析,即拉曼光譜分析,可以探知分子的組分,結構及相對含量等,因此被廣泛成為分子探針技術。該儀器是在1960后產生的,他的光源采用激光

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频