<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • Antpedia LOGO WIKI資訊

    核殼型雙金屬納米催化存在共軛雙量子尺寸效應被揭示

    近日,中國科學技術大學教授路軍嶺課題組/李微雪課題組/韋世強課題組在雙金屬納米催化劑的尺寸效應方面取得重要進展。該研究在原子分子水平上揭示了在苯甲醇選擇性氧化反應中,Au@Pd核殼型雙金屬催化劑的催化性能隨Au核尺寸和Pd殼層厚度變化的調變規律,并首次揭示核殼型雙金屬納米催化存在共軛雙量子尺寸效應。2月1日,相關研究成果以Conjugated dual size effect of core-shell particles synergizes bimetallic catalysis為題,發表在《自然-通訊》(Nature Communications)上。 負載型雙金屬催化劑由于具有隨組分、結構可調變的雙金屬協同催化作用,受到學界和工業界的關注,被應用于加氫、氧化、重整等多個化工生產及能源轉化過程。相較于合金結構,核殼結構催化劑可以利用其特殊的晶格應變和配體效應,優化表面殼層金屬的幾何和電子特性。對于該類催化劑......閱讀全文

    核殼型雙金屬納米催化存在共軛雙量子尺寸效應被揭示

    近日,中國科學技術大學教授路軍嶺課題組/李微雪課題組/韋世強課題組在雙金屬納米催化劑的尺寸效應方面取得重要進展。該研究在原子分子水平上揭示了在苯甲醇選擇性氧化反應中,Au@Pd核殼型雙金屬催化劑的催化性能隨Au核尺寸和Pd殼層厚度變化的調變規律,并首次揭示核殼型雙金屬納米催化存在共軛雙量子尺寸效應。

    錫納米粒子量子殼效應被證實

      德國斯圖加特的馬普固體研究所專家利用隧道掃描顯微鏡研究錫納米粒子證實,金屬粒子的電阻損耗與粒子大小有關,當金屬粒子呈納米狀態時,材料獲得超導性能的溫度會大幅增加。因此,在粒子足夠小的前提下,通過量子效應可增強金屬粒子超導性能60%。這一理論還可預測粒子的納米精度,并為開發室溫環境下

    我國學者在加氫催化劑精準設計方面取得進展

    在國家自然科學基金項目(批準號:22025205、21673215、91945302、22072092、92045301)等資助下,中國科學技術大學路軍嶺教授團隊與李微雪教授等團隊合作,精準設計出單原子殼層的Au@Pt/SiO2雙金屬催化劑,從而打破了Pt催化劑活性—選擇性的“蹺蹺板”困境,在溫和條

    我國學者發現金屬納米催化劑尺寸效應

      記者從中國科學技術大學獲悉,該校路軍嶺教授課題組與李微雪教授課題組合作,首次揭示了金屬納米催化劑中,幾何效應和電子效應各自對催化反應隨尺寸變化的調變規律,創造性地提出一種拆分剝離金屬顆粒幾何效應和電子效應的策略——金屬納米顆粒的“氧化物選擇性包裹”。在具有重要應用背景的鉑催化苯甲醇選擇性氧化到苯

    水電解下穩定的石墨納米碳封裝的富鈷核-殼型電催化劑

    由Co3 [Co(CN)6] 2·nH2O-PB合成核殼結構Co @ NC的示意圖  氧電極在可再生能源技術(如燃料電池和水電解器)的成功商業化中起著至關重要的作用。近日,大邱慶北理工大學Sangaraju Shanmugam教授報告了普魯士藍類似衍生物的氮摻雜納米碳(NC)層捕獲,富鈷,核殼納米結

    高質量InAs(Sb)/GaSb核殼異質結納米線陣列外延生長獲進展

      一維半導體納米線憑借其優越、獨特的電學、光學、力學等特性,在材料、信息與通訊、能源、生物與醫學等重要領域展現出廣闊的應用前景。尤其是,基于半導體納米線的晶體管具有尺寸小、理論截止頻率高等優點,為未來在微處理器芯片上實現超大規模集成電路開拓了新的方向。在III-V族半導體材料中,InAs具有小的電

    研究揭示顯催化劑的真實活性表面

    鎳金雙金屬納米催化劑在二氧化碳加氫反應中的結構演化和反應性能  近日,中科院大連化學物理研究所副研究員劉偉、楊冰與上海高等研究院研究員髙嶷團隊及南方科技大學副教授谷猛團隊合作,利用原位電鏡,在原子尺度上直接觀察了鎳金雙金屬納米催化劑在反應中的動態演變過程,揭示了該催化劑在二氧化碳加氫反應中的真實表面

    福建物構所核殼合金納米催化劑電催化全解水研究取得進展

    原文地址:http://www.cas.cn/syky/202103/t20210329_4782676.shtml   隨著質子交換膜電解池(PEMWEs)的發展,在酸性條件下水解制氫被認為是高效轉化可持續氫能最具前景的方式之一。電解水包括兩個半反應——陽極的析氧反應(OER)和陰極的析氫反應(

    中科大團隊 金屬納米催化劑尺寸效應方面取得重要進展

      金屬納米顆粒的尺寸效應對負載型金屬納米材料的催化活性和選擇性起著重要影響。從幾何結構上看,隨著金屬顆粒尺寸的減小,低配位原子逐步暴露且比例漸漸升高,顯著改變催化材料活性中心的結構和比例。從電子結構上看,金屬顆粒的電子能級也因量子尺寸效應發生顯著改變,極大地影響催化材料和反應物之間的軌道雜化和電荷

    地質地球所發現磁性鐵蛋白顆粒核的納米尺寸效應

      磁性納米顆粒在巖石磁學、環境磁學、生物醫學和納米材料學中具有重要的研究和應用價值。生物源磁性納米顆粒由于具有結晶好、粒度均一和生物相容性好等優點而備受人們青睞。鐵蛋白是生物體內廣泛分布的儲鐵蛋白,蛋白殼外徑約10-12 nm,內徑約8 nm,是理想的納米反應器,被用于磁性納米顆粒的仿生礦化及應用

    Ag納米顆粒能級偏移的尺寸效應研究

    納米材料一直是近些年來科學研究的熱點之一。其之所以吸引人們的大量關注在于其在小尺寸下顯示出的許多不同于常規材料的特性以及巨大的潛在應用前景。對外界環境的響應敏感性也是人們大量研究的重要誘因。相比常規材料,表面低配位原子在納米級別時所占的比例遠遠高于在塊體時的情況,且表面低配位原子與塊體的表現出完全不

    銅納米顆粒能級偏移的尺寸效應研究

    銅納米顆粒及其顆粒薄膜,相比于銅塊體材料,具有較大的表體比,即在表面具有大量低配位原子,而對于塊體材料,這些低配位原子所占比例幾乎可以忽略。這些低配位原子表現出與塊體內原子不同的性質,從而使得銅納米顆粒出現了諸多反常特性,因而展現出廣泛的應用前景。由能帶理論知道,不同的能帶結構使得材料具有不同的性能

    共軛體系的共軛效應介紹

      在單烯烴中碳碳雙鍵上的π電子的運動范圍,局限在兩個碳原子之間,稱為定域運動。在雙鍵單鍵雙鍵共軛的體系,如1,3-丁二烯分子中4個碳原子上的π電子的運動范圍,已不局限于兩個碳原子之間,而是在4個碳原子的分子軌道中運動,稱為離域現象。π電子的離域現象使得電子云的密度分布有所改變,內能降低,分子更趨于

    中國科大等實現原子層面上精細合成負載型雙金屬催化劑

      近日,中國科學技術大學化學物理系教授路軍嶺課題組在原子層面上精細設計與合成負載型雙金屬催化劑領域取得新進展。路軍嶺通過與美國阿貢國家實驗室的J.W. Elam博士合作,成功探索到了一種普適的利用原子層沉積(ALD)技術精細合成負載型雙金屬催化劑方法。該研究成果在線發表在2月10日出版的Nat

    什么是共軛效應?

      共軛效應 (conjugated effect) ,又稱離域效應,是指共軛體系中由于原子間的相互影響而使體系內的π電子(或p電子)分布發生變化的一種電子效應。凡共軛體系上的取代基能降低體系的π電子云密度,則這些基團有吸電子共軛效應,用-C表示,如-COOH,-CHO,-COR;凡共軛體系上的取代

    什么是共軛效應?

    在單烯烴中碳碳雙鍵上的π電子的運動范圍,局限在兩個碳原子之間,稱為定域運動。在雙鍵單鍵雙鍵共軛的體系,如1,3-丁二烯分子中4個碳原子上的π電子的運動范圍,已不局限于兩個碳原子之間,而是在4個碳原子的分子軌道中運動,稱為離域現象。π電子的離域現象使得電子云的密度分布有所改變,內能降低,分子更趨于穩定

    什么是共軛效應

    共軛效應又稱離域效應,是指共軛體系中由于原子間的相互影響而使體系內的π電子 (或p電子)分布發生變化的一種電子效應稱為共軛效應。共軛體系能降低體系π電子云密度的基團有吸電子的共軛效應,能增高共軛體系π電子云密度的基團有給電子的共軛效應。單雙建交替出現的體系或雙鍵碳的相鄰原子上有p軌道的體系均為共軛體

    共軛效應的影響

    所謂共軛效應,是指在分子中形成離域的pai鍵,使電子能在整個空間運動,從而降低了能量,使結構更穩定。對于一個產生共軛結構的反應,由于產物能量更低,會使得這個方向反應的趨勢更大,另外就是對化學鍵性質的改變,例如在CH2=CH-CH=CH2中,四個碳是共軛結構,從而使得鍵長平均化,第二個C-C鍵變短,類

    表面增強拉曼光譜探究銀@碳點核殼納米粒子的催化性能

    碳點(CDs)作為最小的碳材料之一,自2004年被發現以來,已逐漸發展成為一種明星材料。作為一種新型的量子點,CDs具有可實用的光電轉化能力,良好的生物相容性和低毒性,雙光子吸收和上轉換熒光能力,以及易于化學修飾和功能集成性等優點,在光催化,光電器件,環境檢測和生物成像領域有著廣泛的應用。將CDs與

    核殼納米顆粒新材料可有效抑癌

    安徽醫科大學生物醫學工程學院錢海生教授課題組制備出一種新型生物材料——核殼納米顆粒新材料,可有效抑制腫瘤的生長。相關成果日前發表于《生物活性材料》。核殼納米顆粒新材料的作用機理圖 安徽醫科大學供圖光熱增強光動力療法已經被認為是一種有效、非侵入性的癌癥治療方式。因為適當水平的熱效應可以增加腫瘤內的血流

    過程工程所在超結構納米材料領域獲新進展

      由于在催化領域巨大的潛在應用,內部結構和殼層組成可以調控的空心或搖鈴型結構貴金屬納米材料一直是研究者非常感興趣的領域。空心或搖鈴型結構納米顆粒較高的催化活性可歸因于它們具有較大的催化表面。和實心材料相比,空心或搖鈴型結構顆粒表面的開放位點或微細孔道一定條件下允許反應物穿越,使顆粒的內表

    雙金屬納米簇催化劑“1+1>2”

      金(Au)是公認的惰性金屬,但納米金卻具有很高的活性,是非常優異的催化劑。這就是其作為第四代催化劑的獨特之處。金鈀雙金屬納米簇催化劑更可能高效實現氫氣、氧氣直接合成過氧化氫。在近日由北京化工大學主辦的2013年首屆中歐雙金屬納米簇國際研討會上,記者領略了雙金屬納米簇催化劑的神奇之處。這種具有“1

    通過雙單原子亞納米反應器實現高效電化學固氮

      近日,中國科學院大連化學物理研究所微納米反應器與反應工程學研究組研究員劉健團隊,與天津大學教授梁驥團隊、澳大利亞斯威本科技大學教授孫成華團隊合作,通過亞納米空間限域策略,開發Fe-Cu雙單原子亞納米反應器,用于電催化N2還原反應,實現NH3高效率合成,為電催化固氮提供新思路。  單原子催化劑能最

    關于共軛效應的介紹

      “共軛效應是穩定的”是有機化學的最基本原理之一。但是,自30年代起,鍵長平均化,4N+2芳香性理論,苯環D6h構架的起因,分子的構象和共軛效應的因果關系,π-電子離域的結構效應等已經受到了廣泛的質疑。其中,最引人注目的是Vollhardt等合成了中心苯環具有環己三烯幾何特征的亞苯類化合物,Sta

    什么是同共軛效應?

      又稱p軌道與p軌道的σ型重疊。甲基以上的烷基,除有超共軛效應外,還可能產生同共軛效應。所有同共軛效應,原是指β碳原子上的C-H鍵與鄰近的π鍵間的相互作用。大量的化學活性和電子光譜的數據表明,在丙烯基離子和類似的烯羰基中,存在一種特殊的p-π或π-π共軛現象,即所謂同共軛效應:  在丙烯基離子中是

    誘導效應與共軛效應的異同

      (1)不同之處  誘導效應:存在σ鍵中;通過原子間電負性的差異而導致鍵的極性改變使整個分子電子云發生移動;是短距離效應,一般有3個碳原子后基本消失;極化變化是單一方向。  共軛效應:存在于共軛體系中;通過π電子的運動,沿著共軛鏈傳遞;強度一般不因共軛鏈的長度而受影響,屬長距離電子效應;極性交替出

    實現在單個金屬粒子催化活性位的結構調控

    近日,中科院大連化學物理研究所催化基礎國家重點實驗室研究員李勇、研究員申文杰等與德國卡爾斯魯厄理工學院汪躍民教授、上海應用物理研究所研究員姜政、中國科技大學李微雪教授等合作,在單個金屬合金粒子催化加氫研究方面取得新進展。相關研究成果發表在《自然—通訊》。雙金屬合金催化劑具有可變的化學組成、可調的幾何

    廢棄生物質基炭材料及催化能源化應用研究獲進展

      中國科學院生態環境研究中心劉振剛研究組在廢棄生物質基炭材料制備及其能源催化轉化研究方面取得新進展,相關研究成果近期發表于Green Chemistry、Applied Catalysis B: Environmental (2017;204:566-576)和ACS Sustainable Ch

    我所通過雙單原子亞納米反應器實現高效電化學固氮

      近日,我所微納米反應器與反應工程學研究組(05T7組)劉健研究員團隊與天津大學梁驥教授團隊、澳大利亞斯威本科技大學孫成華教授團隊合作,通過亞納米空間限域策略,開發了Fe-Cu雙單原子亞納米反應器,用于電催化N2還原反應,實現了NH3高效率合成,為電催化固氮提供了新思路。  單原子催化劑由于能最大

    Au@ZnO納米顆粒自組裝陣列 及其光電催化性能研究獲進展

      近日,中國科學院合肥物質科學研究院固體物理研究所微納技術與器件研究室李越課題組,與濟南大學教授李村成合作,在Au@ZnO核殼納米顆粒自組裝及光電催化析氫性能研究方面取得進展。圖1.Au@ZnO核殼納米粒子(a) 低倍TEM圖,(b) 高倍TEM圖,(c) SEM圖,(d) HRTEM圖。圖2.不

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频