熒光分光光度計
熒光分光光度計是用于掃描液相熒光標記物所發出的熒光光譜的一種儀器。其能提供包括激發光譜、發射光譜以及熒光強度、量子產率、熒光壽命、熒光偏振等許多物理參數,從各個角度反映了分子的成鍵和結構情況。通過對這些參數的測定, 不但可以做一般的定量分析, 而且還可以推斷分子在各種環境下的構象變化, 從而闡明分子結構與功能之間的關系。熒光分光光度計的激發波長掃描范圍一般是190~650nm,發射波長掃描范圍是200~800nm。可用于液體、固體樣品(如凝膠條)的光譜掃描。 一、種類 熒光光譜法具有靈敏度高、選擇性強、用樣量少、方法簡便、工作曲線線形范圍寬等優點,可以廣泛應用于生命科學、醫學、藥學和藥理學、有機和無機化學等領域。 熒光分光光度計的發展經歷了手控式熒光分光光度計,自動記錄式熒光分光光度計,計算機控制式熒光分光光度計三個階段;熒光分光光度計還可分為單光束式熒光分光光度計和雙光束式熒光分光光度計兩大系列。其他的還有......閱讀全文
熒光光譜屬于分子光譜嗎
根本差別在于激發基態原子的外層電子躍遷的方式,發射光譜屬于熱致激發,即基態原子吸收熱量后,其外層電子躍遷致較高能級,然后躍遷回較低能態發射的特征譜線;分子熒光則是屬于光致激發,基態原子受光輻射后,其外層電子躍遷致較高能級,然后躍遷回較低能態發射的特征譜線。
熒光光譜儀單分子熒光檢測方法分析
單分子熒光檢測。單分子熒光分析是實現單分子檢測最靈敏的光分析技術。單分子熒光檢測的關鍵在于確保被照射的體積中只有一個分子與激光發生作用以及消除雜質熒光的背景干擾。單分子熒光檢測可提供單分子水平上生物分子反應的動力學信息,分子構象以及構象隨時間的變化,因此尤其在生命科學領域中具有廣闊的應用前景,為
分子熒光光譜核心技術
光源:由于熒光樣品的熒光強度與激發光的強度成正比,因此,作為一種理想的激發光源應具備:足夠的強度、在所需光譜范圍內有連續的光譜、強度與波長無關(即光源的輸出是連續平滑等強度的輻射)、穩定的光強。常用的光源主要有氙燈,激光器等。 探測器: 熒光的強度通常比較弱,因此要求檢測器有較高的靈敏度。一般
分子熒光光譜分析
分子熒光光譜分析編輯molecular fluorescence analysis當物質分子吸收了特征頻率的光子,就由原來的基態能級躍遷至電子激發態的各個不同振動能級。激發態分子經與周圍分子撞擊而消耗了部分能量,迅速下降至第一電子激發態的最低振動能級,并停留約10-9秒(10的負9次方秒)之后,直接
分子熒光光譜實驗報告
一、實驗目的:??? 1.掌握熒光光度法的基本原理及激發光譜、發射光譜的測定方法;學會運用分子熒光光譜法對物質進行定性分析。??? 2.了解熒光分光光度計的構造和各組成部分的作用。??? 3.了解影響熒光產生的幾個主要因素。二、實驗內容:? ? 測定熒光黃/水體系的激發光譜和發射光譜;? ? 首先根
原子發射光譜法與原子熒光、分子熒光、分子磷光光譜法...
原子發射光譜法與原子熒光、分子熒光、分子磷光光譜法的差別 原子發射是利用高溫等產生氣態原子并將它們激發,收集測量回到基態時所發出的光,原子發射光譜的特點是復雜,一個原子可能有好多條譜線,可定性,也可定量。原子熒光,可分為兩種,一種是x-ray熒光,是對于內層電子的激發,導致外層電子向內層躍遷,
發射光譜法與原子熒光、分子熒光、分子磷光法的差別?
原子發射是利用高溫等產生氣態原子并將它們激發,收集測量回到基態時所發出的光,原子發射光譜的特點是復雜,一個原子可能有好多條譜線,可定性,也可定量。原子熒光,可分為兩種,一種是x-ray熒光,是對于內層電子的激發,導致外層電子向內層躍遷,產生的熒光。另一種是用特定光源去激發外層電子,并測量熒光。特點是
簡介分子熒光光譜儀優勢
制樣簡單,試樣多數不需經過化學處理就可分析,且固體、液體試樣均可直接分析。 分析速度快。雖然測定用時與測定精密度有關,但一般都很短,2~5分鐘就可以測完樣品中的全部待測元素。 多元素同時檢出能力。可同時檢測一個樣品中的多種元素。一個樣品一經激發,樣品中各元素都各自發射出其特征譜線,可以進行分
分子熒光光譜分析作用
作用編輯對于稀溶液( 吸光度A=εcl≤0.05 )而言,其熒光強度F=2.3jI0εcl。式中j是熒光物質的熒光效率;I0為入射光強度;ε為熒光物質的摩爾吸光系數,c為熒光物質的濃度 ,l為樣品池的厚度。該式表明,在稀溶液(A≤0.05)和I0及l不變的條件下,熒光強度與該物質的濃度成正比
簡述分子熒光光譜儀劣勢
在經典分析中,影響譜線強度的因素較多,尤其是試樣組份帶來的光譜重疊等,所以對標準參比的組份要求較高。 難于作絕對定量分析,需要精確的標樣做比較。含量(濃度)較大時,準確度較差。 對樣品化合物有共軛性要求,應用不廣泛.
如何使用分子熒光光譜儀
分子熒光光譜法又稱分子發光光譜法或熒光分光光度法,即通常所謂的熒光分析法。該法是一種利用某一波長的光線照射試樣,使試樣吸收這一輻射,然后在發射出波長相同或波長較長的光線的化學分析方法。如果這種再發射約在 s內發生,則稱為熒光;若能在 s或更長的時間后發生,則稱磷光。分子熒光光譜法就是利用這種再發射的
如何使用分子熒光光譜儀
分子熒光光譜法又稱分子發光光譜法或熒光分光光度法,即通常所謂的熒光分析法。該法是一種利用某一波長的光線照射試樣,使試樣吸收這一輻射,然后在發射出波長相同或波長較長的光線的化學分析方法。如果這種再發射約在 s內發生,則稱為熒光;若能在 s或更長的時間后發生,則稱磷光。分子熒光光譜法就是利用這種再發射的
分子熒光光譜儀操作步驟
分子熒光光譜儀操作步驟HITACHI F-4500型熒光光譜儀操作規程一、開機前準備 1.實驗室溫度應保持在15℃~30℃之間,濕度應保持在45%~70%之間。 2.確認樣品室內無樣品后,關上樣品室蓋。 二、開機 1.打開電源開關(POWER→ON)待風扇正常運轉。?2.按(X。LAMR START
熒光光譜儀的分子熒光光譜關鍵技術指標介紹
熒光光譜儀的光譜分辨率。光譜分辨率是指把光譜特征、譜帶分解成為分離成分的能力。高級的熒光光譜儀分辨率可達0.5~1nm。 熒光光譜儀的頻譜范圍。高級的熒光光譜儀可覆蓋200nm~1500nm。 熒光光譜儀中的波長準確度和波長重復性。波長準確度,是指波長的實際測定值與理論值(真值)的差,高端儀
原子發射光譜法與原子熒光、分子熒光、分子磷光法的差別
原子發射是利用高溫等產生氣態原子并將它們激發,收集測量回到基態時所發出的光,原子發射光譜的特點是復雜,一個原子可能有好多條譜線,可定性,也可定量。 原子熒光,可分為兩種,一種是x-ray熒光,是對于內層電子的激發,導致外層電子向內層躍遷,產生的熒光。另一種是用特定光源去激發外層電子,并測量熒光
分子熒光壽命
熒光壽命(lifetime):去掉激發光后,分子的熒光強度降到激發時最大熒光強度的1/e(備注:e為自然對數的底數,其值約為2.718)所需要的時間,稱為熒光壽命.熒光分子處于S1激發態的平均壽命,可用下式表示:τ f = 1 /(kf + ΣK)(典型的熒光壽命在10-8~10-10s) ?kf表
原子發射光譜和分子熒光光譜的區別
根本差別在于激發基態原子的外層電子躍遷的方式,發射光譜屬于熱致激發,即基態原子吸收熱量后,其外層電子躍遷致較高能級,然后躍遷回較低能態發射的特征譜線;分子熒光則是屬于光致激發,基態原子受光輻射后,其外層電子躍遷致較高能級,然后躍遷回較低能態發射的特征譜線。
分子熒光的激發光譜與發射光譜
任何熒光化合物都有兩個特征光譜:?激發光譜和發射光譜,這是定性和定量分析的基本參數和依據。 激發光譜:熒光是光致發光,因此必須選擇合適的激發波長。這可由激發光譜曲線來確定。繪制激發光譜曲線時選擇熒光的最大發射波長為測量波長,改變激發光的波長,測定熒光強度的變化。以激發光波長為橫坐標,熒光強度為縱坐標
單分子熒光染料——ATTO熒光染料
單分子熒光檢測技術是近十年來迅速發展起來的一種超靈敏的檢測技術,其檢測尺度可以精確到納米量級,是單分子檢測的首選方法。該檢測技術利用熒光標記來顯示和追蹤單個分子的構象變化、動力學、單分子之間的相互作用以及進行單分子操縱。而熒光染料作為重要的標記物在單分子檢測中起到了舉足輕重的作用。熒光染料,指吸收某
單分子熒光染料——ATTO熒光染料
單分子熒光檢測技術是近十年來迅速發展起來的一種超靈敏的檢測技術,其檢測尺度可以精確到納米量級,是單分子檢測的首選方法。該檢測技術利用熒光標記來顯示和追蹤單個分子的構象變化、動力學、單分子之間的相互作用以及進行單分子操縱。而熒光染料作為重要的標記物在單分子檢測中起到了舉足輕重的作用。熒光染料,指吸收某
分子熒光光譜分析檢測設置
進行分子熒光光譜分析的儀器稱熒光分光光度計。它由5 部分組成:光源;單色器;樣品池;檢測器;顯示裝置 。熒光激發光譜和發射光譜,可用來鑒定有機化合物。冷卻至 77K ,可獲得高度分辨的低溫熒光光譜,有利于鑒別 。還可采用同步掃描熒光法,及1~4階的導數熒光光譜和三維光譜等,來鑒別多組分熒光物質。
分子熒光光譜關鍵技術指標
熒光光譜儀的光譜分辨率。光譜分辨率是指把光譜特征、譜帶分解成為分離成分的能力。高級的熒光光譜儀分辨率可達0.5~1nm。 熒光光譜儀的頻譜范圍。高級的熒光光譜儀可覆蓋200nm~1500nm。 熒光光譜儀中的波長準確度和波長重復性。波長準確度,是指波長的實際測定值與理論值(真值)的差,高端儀
分子熒光光譜在食品領域的應用
在食品領域的應用該領域主要用于食品中礦物質及金屬元素、氨基酸、維生素、菌類污染、添加劑、防腐劑、食品包裝有害物質、農藥殘留等的分析檢測。特別是與HPLC、TLC、FIA等技術的結合可以更好的達到食品中各種物質的檢測效果。目前我國食品標準日趨國際化,對于食品分析的要求也越來越趨向于靈敏和微量化。熒光分
分子熒光光譜儀有哪些優勢?
1、制樣簡單,試樣多數不需經過化學處理就可分析,且固體、液體試樣均可直接分析。 2、分析速度快。雖然測定用時與測定精密度有關,但一般都很短,2~5分鐘就可以測完樣品中的全部待測元素。 3、多元素同時檢出能力。可同時檢測一個樣品中的多種元素。一個樣品一經激發,樣品中各元素都各自發射出其特征譜線
分子熒光和分子磷光
分子和原子一樣,也有它的特征分子能級,分子內部的運動可分為價電子運動、分子內原子在平衡位置附近的振動和分子繞其重心的轉動。因此分子具有電子能級、振動能級和轉動能級。 分子從外界吸收能量后,就能引起分子能級的躍遷,即從基態躍遷到激發態,分子吸收能量同樣具有量子化的特征,即分子只能吸收等于二個能級
熒光光譜
熒光光譜:熒光光譜包括激發譜和發射譜兩種。激發譜是熒光物質在不同波長的激發光作用下測得的某一波長處的熒光強度的變化情況,也就是不同波長的激發光的相對效率;發射譜則是某一固定波長的激發光作用下熒光強度在不同波長處的分布情況,也就是熒光中不同波長的光成分的相對強度。 既然然激發譜是表示某種熒光物質在不同
X射線熒光光譜和熒光光譜-區別
一、理論上。熒光光譜是比較寬的概念,包括了X射線熒光光譜。二、從儀器分析上,熒光光譜分析可以分為:X射線熒光光譜分析、原子熒光光譜分析,1)X射線熒光光譜分析——發射源是Rh靶X光管2)原子熒光光譜分析——可用連續光源或銳線光源。常用的連續光源是氙弧燈,常用的銳線光源是高強度空心陰極燈、無極放電燈、
分子熒光和原子熒光的區別
分子熒光和原子熒光都是光致發光,二者都是價電子躍遷,但因為前者會伴隨有振動能級和轉動能級的躍遷,所以是連續發射,而后者是分立的線發射;前者分析物一般是處于溶液狀態,后者需要轉化成氣態原子;前者測定的主要是含有共軛不飽和體系的化合物,而后者測定的主要是金屬元素的含量;前者采用的主要是氙燈或高壓汞燈,而
源于分子熒光光譜核心技術的介紹
光源:由于熒光樣品的熒光強度與激發光的強度成正比,因此,作為一種理想的激發光源應具備:足夠的強度、在所需光譜范圍內有連續的光譜、強度與波長無關(即光源的輸出是連續平滑等強度的輻射)、穩定的光強。常用的光源主要有氙燈,激光器等。 探測器: 熒光的強度通常比較弱,因此要求檢測器有較高的靈敏度。一般
分子熒光光譜在藥物分析中的應用
在藥物分析中的應用藥物分析領域可以利用熒光分析進行藥物的有效成分鑒定、藥物代謝動力學研究、臨床藥理藥效分析等。藥物熒光分析可以分為三類:直接熒光分析、間接熒光分析和納米熒光分析。常規熒光分析法最早被應用于分析抗瘧疾藥物奎寧,隨著熒光分析法的發展,其應用范圍日益擴大,目前被廣泛用于抗菌素藥物、止痛藥、