實驗原理:
蛋白質含量測定法,是生物化學研究中最常用、最基本的分析方法之一。目前常用的有四種古老的經典方法,即定氮法、雙縮尿法(Biuret法)、Folin-酚試劑法(Lowry法)和紫外吸收法。另外還有一種近十年才普遍使用起來的新的測定法,即考馬斯亮藍法(Bradford法)。其中Bradford法和Lowry法靈敏度最高,比紫外吸收法靈敏10~20倍,比Biuret法靈敏100倍以上。定氮法雖然比較復雜,但較準確,往往以定氮法測定的蛋白質作為其他方法的標準蛋白質。
值得注意的是,這后四種方法并不能在任何條件下適用于任何形式的蛋白質,因為一種蛋白質溶液用這四種方法測定,有可能得出四種不同的結果。每種測定法都不是完美無缺的,都有其優缺點。在選擇方法時應考慮:①實驗對測定所要求的靈敏度和精確度;②蛋白質的性質;③溶液中存在的干擾物質;④測定所要花費的時間。考馬斯亮藍法(Bradford法),由于其突出的優點,正得到越來越廣泛的應用。
一、微量凱氏(Kjeldahl)定氮法
樣品與濃硫酸共熱。含氮有機物即分解產生氨(消化),氨又與硫酸作用,變成硫酸氨。經強堿堿化使之分解放出氨,借蒸汽將氨蒸至酸液中,根據此酸液被中和的程度可計算得樣品之氮含量。若以甘氨酸為例,其反應式如下:
CH2COOH-NH2+3H2SO4=2CO2+3SO2+4H2O+NH3 (1)
2NH3+H2SO4=(NH4)2SO4(2)
(NH4)2SO4+2NaOH=2H2O+Na2SO4+2NH3(3)
反應(1)、(2)在凱氏瓶內完成,反應(3)在凱氏蒸餾裝置中進行。
為了加速消化,可以加入CuSO4作催化劑,K2SO4以提高溶液的沸點。收集氨可用硼酸溶液,滴定則用強酸。實驗和計算方法這里從略。
計算所得結果為樣品總氮量,如欲求得樣品中蛋白含量,應將總氮量減去非蛋白氮即得。如欲進一步求得樣品中蛋白質的含量,即用樣品中蛋白氮乘以6.25即得。
五種蛋白質測定方法比較如下:方法 |
靈敏度 |
時間 |
原理 |
干擾物質 |
說明 |
凱氏定氮法 (Kjedahl法) |
靈敏度低,適用于0.2~ 1.0mg氮,誤差為±2% |
費時 8~10小時 |
將蛋白氮轉化為氨,用酸吸收后滴定 |
非蛋白氮(可用三氯乙酸沉淀蛋白質而分離) |
用于標準蛋白質含量的準確測定;干擾少;費時太長 |
雙縮脲法(Biuret法) |
靈敏度低 1~20mg |
中速 20~30分鐘 |
多肽鍵+堿性Cu2+?紫色絡合物 |
硫酸銨; Tris緩沖液; 某些氨基酸 |
用于快速測定,但不太靈敏;不同蛋白質顯色相似 |
紫外吸收法 |
較為靈敏 50~100ug |
快速 5~10分鐘 |
蛋白質中的酪氨酸和色氨酸殘基在280nm處的光吸收 |
各種嘌吟和嘧啶; 各種核苷酸 |
用于層析柱流出液的檢測;核酸的吸收可以校正 |
Folin-酚試劑法(Lowry法) |
靈敏度高 ~5ug |
慢速 40~60 分鐘 |
雙縮脲反應;磷鉬酸-磷鎢酸試劑被Tyr和Phe還原 |
硫酸銨; Tris緩沖液; 甘氨酸; 各種硫醇 |
耗費時間長;操作要嚴格計時; 顏色深淺隨不同蛋白質變化 |
考馬斯亮藍法(Bradford法) |
靈敏度最高 1~5ug |
快速 5~15分鐘 |
考馬斯亮藍染料與蛋白質結合時,其lmax由465nm變為595nm |
強堿性緩沖液; TritonX-100; SDS |
最好的方法; 干擾物質少; 顏色穩定顏色深淺隨不同蛋白質變化 |
二、雙縮脲法(Biuret法)
(一)實驗原理
雙縮脲(NH3CONHCONH3)是兩個分子脲經180℃左右加熱,放出一個分子氨后得到的產物。在強堿性溶液中,雙縮脲與CuSO4形成紫色絡合物,稱為雙縮脲反應。凡具有兩個酰胺基或兩個直接連接的肽鍵,或能過一個中間碳原子相連的肽鍵,這類化合物都有雙縮脲反應。
紫色絡合物顏色的深淺與蛋白質濃度成正比,而與蛋白質分子量及氨基酸成分無關,故可用來測定蛋白質含量。測定范圍為1-10mg蛋白質。干擾這一測定的物質主要有:硫酸銨、Tris緩沖液和某些氨基酸等。
此法的優點是較快速,不同的蛋白質產生顏色的深淺相近,以及干擾物質少。主要的缺點是靈敏度差。因此雙縮脲法常用于需要快速,但并不需要十分精確的蛋白質測定。
(二)試劑與器材
1、試劑:
(1)標準蛋白質溶液:用標準的結晶牛血清清蛋白(BSA)或標準酪蛋白,配制成10mg/ml的標準蛋白溶液,可用BSA濃度1mg/ml的A280為0.66來校正其純度。如有需要,標準蛋白質還可預先用微量凱氏定氮法測定蛋白氮含量,計算出其純度,再根據其純度,稱量配制成標準蛋白質溶液。牛血清清蛋白用H2O 或0.9%NaCl配制,酪蛋白用0.05NNaOH配制。
(2)雙縮脲試劑:稱以1.50克硫酸銅(CuSO4·5H2O)和6.0克酒石酸鉀鈉
(KNaC4H4O6·4H2O),用500毫升水溶解,在攪拌下加入300毫升10% NaOH溶液,用水稀釋到1升,貯存于塑料瓶中(或內壁涂以石蠟的瓶中)。此試劑可長期保存。若貯存瓶中有黑色沉淀出現,則需要重新配制。
2. 器材:
可見光分光光度計、大試管15支、旋渦混合器等。
(三)操作方法
1. 標準曲線的測定:取12支試管分兩組,分別加入0,0.2,0.4,0.6,0.8,1.0毫升的標準蛋白質溶液,用水補足到1毫升,然后加入4毫升雙縮脲試劑。充分搖勻后,在室溫(20-25℃)下放置30分鐘,于540nm處進行比色測定。用未加蛋白質溶液的第一支試管作為空白對照液。取兩組測定的平均值,以蛋白質的含量為橫座標,光吸收值為縱座標繪制標準曲線。
2、樣品的測定:取2-3個試管,用上述同樣的方法,測定未知樣品的蛋白質濃度。注意樣品濃度不要超過10mg/ml。
三、Folin—酚試劑法(Lowry法)
(一)實驗原理
這種蛋白質測定法是最靈敏的方法之一。過去此法是應用最廣泛的一種方法,由于其試劑乙的配制較為困難(現在已可以訂購),近年來逐漸被考馬斯亮蘭法所取代。此法的顯色原理與雙縮脲方法是相同的,只是加入了第二種試劑,即Folin—酚試劑,以增加顯色量,從而提高了檢測蛋白質的靈敏度。這兩種顯色反應產生深蘭色的原因是:
?在堿性條件下,蛋白質中的肽鍵與銅結合生成復合物。?Folin—酚試劑中的磷鉬酸鹽—磷鎢酸鹽被蛋白質中的酪氨酸和苯丙氨酸殘基還原,產生深蘭色(鉬蘭和鎢蘭的混合物)。在一定的條件下,蘭色深度與蛋白的量成正比。
Folin—酚試劑法最早由Lowry確定了蛋白質濃度測定的基本步驟。以后在生物化學領域得到廣泛的應用。這個測定法的優點是靈敏度高,比雙縮脲法靈敏得多,缺點是費時間較長,要精確控制操作時間,標準曲線也不是嚴格的直線形式,且專一性較差,干擾物質較多。對雙縮脲反應發生干擾的離子,同樣容易干擾Lowry反應。而且對后者的影響還要大得多。酚類、檸檬酸、硫酸銨、Tris緩沖液、甘氨酸、糖類、甘油等均有干擾作用。濃度較低的尿素(0.5%),硫酸納(1%),硝酸納(1%),三氯乙酸(0.5%),乙醇(5%),乙醚(5%),丙酮(0.5%)等溶液對顯色無影響,但這些物質濃度高時,必須作校正曲線。含硫酸銨的溶液,只須加濃碳酸鈉—氫氧化鈉溶液,即可顯色測定。
若樣品酸度較高,顯色后會色淺,則必須提高碳酸鈉—氫氧化鈉溶液的濃度1-2倍。
進行測定時,加F olin—酚試劑時要特別小心,因為該試劑僅在酸性pH條件下穩定,但上述還原反應只在pH=10的情況下發生,故當Folin一酚試劑加到堿性的銅—蛋白質溶液中時,必須立即混勻,以便在磷鉬酸—磷鎢酸試劑被破壞之前,還原反應即能發生。
此法也適用于酪氨酸和色氨酸的定量測定。
此法可檢測的最低蛋白質量達5mg。通常測定范圍是20-250mg。
近日,中國科學院生物物理研究所方顯楊課題組在《結構生物學的當前觀點》發表綜述,全面總結了利用非天然堿基對系統賦能分子標尺技術及其應用。隨著全球對由RNA病毒引起的病毒性疾病的關注度增加,如何通過深入理......
中國科學院生物物理研究所葉克窮研究組和北京生命科學研究所杜立林研究組合作,在裂殖酵母中發現一種新型殺手基因tdk1,并揭示其蛋白質產物控制細胞生存的分子和結構機制。兩篇相關論文11月1日發表于美國《國......
北京時間10月9日下午5點45分許,2024年諾貝爾化學獎揭曉。美國科學家DavidBaker獲獎,以表彰其在計算蛋白質設計方面的貢獻;另一半則共同授予英國科學家DemisHassabis和JohnM......
科技日報北京9月27日電(記者張佳欣)25日發表在《自然》雜志的一項研究稱,西班牙基因組調控中心和英國威康桑格研究所的研究人員發現,基因突變對蛋白質穩定性的影響遵循著極其簡單的規律。這一發現對加速開發......
雪花牛肉因其口感佳風味濃而廣受歡迎。其實,豬肉也有“雪花”,它實質是脂肪沉積到肌肉纖維之間形成明顯的紅、白相間狀似大理石花紋的“雪花”樣。簡單來說,雪花肉就是肌肉組織中肌內脂肪含量豐富后表現出肉眼可見......
蛋白質是生命體內最重要的生物大分子之一,在生命活動過程中執行著多種關鍵功能。利用外源性獲取的蛋白質,可以在細胞及體內實現生物大分子的化學標記與功能調控,進而應用于生命機制的解析研究及疾病的靶向治療。然......
最近,印度理工學院(位于德里)化學工程系進行了一項研究,使用液相色譜-質譜聯用技術(LC–MS)來區分單克隆抗體(mAb)中的異變體(糖型),能夠對其進行表征,揭示了在完整水平上可辨識的峰。盡管商業軟......
運動有益健康,但人們并非總是想去鍛煉,這究竟受到什么影響?西班牙國家癌癥研究中心薩比奧研究團隊發現了與身體運動有關的3種蛋白質,這些蛋白質可能是激活運動欲望的“開關”。相關論文發表在最新一期《科學進展......
科技日報訊(記者張佳欣)據新一期《科學》雜志報道,美國加州大學圣迭戈分校科學家發現了生物界迄今最大的蛋白質,比此前已知的最大蛋白質——人類肌聯蛋白還要大約25%。研究人員表示,這是蛋白質界的“珠穆朗瑪......
瑞士洛桑聯邦理工學院開發了一種名為CARBonAra的新型人工智能(AI)驅動模型。該模型可以根據不同分子環境所施加限制的主鏈支架預測蛋白質序列,有望在蛋白質工程及包括醫學和生物技術在內的多個領域帶來......