<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • Antpedia LOGO WIKI資訊

    國家納米中心在非硅基材料納米電子器件研究中取得進展

    電子元器件的多功能化是應用電子技術發展的重要趨勢,因而非硅基材料越來越受到研究人員的關注。2016年,中國科學院國家納米科學中心鄢勇課題組與韓國蔚山科技大學教授Bartosz Grzybowski等人合作,采用金屬納米顆粒構建了雙層結構的二極管、電阻等電子元器件,并與各種金納米顆粒構建的傳感器件集成,實現了環境信號的采集、處理和報告,相關成果以封面文章的形式發表在《自然-納米技術》(Nature Nanotech., 2016, 11, 603-608)上。其中,最重要的二極管的設計受到了傳統半導體pn結的啟發,將兩層帶有相反電荷的金納米顆粒薄膜面對面接觸,可遷移的對離子在熵驅動下由于濃度梯度相互擴散,從而在界面處建立內建電場,調控電子的不對稱輸運。 最近,鄢勇課題組將類似的設計理念推廣到無能隙的石墨烯材料中,采用帶相反電荷的氧化石墨烯作為活性層,高導電率的單壁碳納米管作為電極,實現了全碳材料pn二極管的構筑。該二極管具有......閱讀全文

    國家納米中心在非硅基材料納米電子器件研究中取得進展

      電子元器件的多功能化是應用電子技術發展的重要趨勢,因而非硅基材料越來越受到研究人員的關注。2016年,中國科學院國家納米科學中心鄢勇課題組與韓國蔚山科技大學教授Bartosz Grzybowski等人合作,采用金屬納米顆粒構建了雙層結構的二極管、電阻等電子元器件,并與各種金納米顆粒構建的傳感器件

    寧波材料所納米硅基負極材料研究取得進展

      相對于傳統石墨負極材料(372mAh/g),硅負極材料具有極高的理論比容量(3580mAh/g),是未來高能量密度動力鋰離子電池負極材料首選。但硅負極材料在充放電循環過程中存在體積變化(高達3倍以上),造成硅顆粒粉化,從而引發SEI膜反復再生庫倫效率低,電接觸變差極化增大,使實際硅負極材料循環壽

    硅納米線將繪電子器件新版圖

      雖然我國目前已經初步實現了硅納米晶體管、傳感器等納米器件的部分功能,但是離納米器件的大規模集成還有相當大的距離。   美國斯坦福大學研究人員已經研發出用硅納米線制成的“紙電池”。   當全世界的科學家一窩蜂地關注碳納米管時,殊不知,另一種一維納米材料硅納米線同樣能給人帶來意想不到的驚喜。

    硅納米負極是什么材料

    研究人員發現硅納米作為負極理論容量可以達到4200,而目前的石墨負極材料理論也就372,行內很多廠家想用納米硅作為負極材料,問題是硅充電時體積膨脹好幾倍,有出現粉化現象,基本證明納米硅不能單獨作為負極材料,現在比較流行的是硅碳復合材料,緩解硅的膨脹,我們咸陽六元碳晶公司也是初入此行,也想研究開發硅碳

    硅與非硅材料“混搭”難題解決

      美國加州大學戴維斯分校的科學家最近展示了一種具有三維結構的納米線晶體管,并借助該技術成功將硅與非硅材料集成到了一個集成電路中。研究人員稱,該技術有望幫助硅材料突破瓶頸,為更快、更穩定的電子和光子設備的制造鋪平道路。  硅是目前最常見的一種電子材料,但它并不是萬能的。建立在傳統蝕刻工藝基礎的硅集成

    硅與非硅材料“混搭”難題解決

      美國加州大學戴維斯分校的科學家最近展示了一種具有三維結構的納米線晶體管,并借助該技術成功將硅與非硅材料集成到了一個集成電路中。研究人員稱,該技術有望幫助硅材料突破瓶頸,為更快、更穩定的電子和光子設備的制造鋪平道路。  硅是目前最常見的一種電子材料,但它并不是萬能的。建立在傳統蝕刻工藝基礎的硅集成

    硅納米管:自組生長新納米材料

      湖南大學博士生導師唐元洪教授課題組率先合成自組生長的硅納米管,標志著我國在納米材料研究方面取得重大突破。   自組生長的硅納米管是在一定條件下由一個個原子自己搭建生成、內部排列有序的納米管,它完全可以體現硅納米管的真實特性,同時具備碳納米材料和硅納米線材料的性能,在傳感器、晶體管、光電器件等方

    “神奇材料”石墨烯“聯姻”硅基技術

      據物理學家組織網7月10日(北京時間)報道,奧地利、德國和俄羅斯的科學家們合作研發出一種新方法,可以很好地讓“神奇材料”石墨烯同現有占主流的硅基技術“聯姻”,制造出在半導體設備等領域廣泛運用的石墨烯-硅化物。相關研究發表在英國自然集團旗下的《科學報告》雜志上。   石墨烯是從石墨材料中剝離出來

    新研究發現非晶態高硅氧化物納米顆粒

    在廣東省科學院建設國內一流研究機構行動專項資金項目等資助下,廣東省科學院新材料研究所粉末冶金團隊首次發現非晶態高硅氧化物納米顆粒,并闡釋了原位氧化納米顆粒增強選區激光熔化Co-Cr-W合金強化機制。相關研究近日發表于《材料科學技術》(Journal of Materials Scienc

    世界首例具有原子精度的全碳電子器件面世

      記者15日從廈門大學獲悉,該校固體表面物理化學國家重點實驗室、能源與石墨烯創新平臺洪文晶教授、謝素原教授與英國蘭卡斯特大學柯林·蘭伯特院士團隊合作,在國際上首次制備了以單個富勒烯分子為核心單元、石墨烯為電極的全碳電子器件,并通過富勒烯分子的分子工程學實現了對該全碳器件電子學性質的調控,為突破硅

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频