X熒光光譜儀是測定材料發光性能的基本設備。主要包括光源、激發單色器、樣品池、熒光單色器及探測器等主要部件。而探測器是很重要的一環,它的重要作用是接受和分辨信號,由于探測器性能的不同,在選用探測器時,就需要綜合考慮多種因素。 好的探測器不僅需要具有高分辨率和高計數率,還需要有較寬的元素分析范圍和有效活性區。其應用領域和使用環境等也是需要關注之一。 就目前X熒光光譜儀常用的三種X射線探測器而言,產生一個離子對的平均能量,在Si(Li)探測器、流氣式正比計數器、閃爍計數器之間大約相差一個量級,而分辨率與統一個光子產生的電子數的平方根成正比,故三者之間的分辨率也粗略相差三倍。由人射光子在探測器中產生的等價離子對數目與人射光子能量成正比,與產生離子對的平均能量成反比。 三種X射線探測器的比較: 1、流氣式正比計數器適用波長范圍0.15~5.0/nm,平均能量/離子對26.4eV,電子數305/光子,分辨率1.2/......閱讀全文
由于各種物質受激發發出的X/γ射線不同,嫦娥一號衛星通過X/γ射線譜儀,分析月球表面的礦物組成和巖石類型,評估其鐵、鈦等14種元素含量和物質類型分布特點,初步了解月球的構成和資源。 為什么一項任務要用兩個設備來共同完成呢?γ射線譜儀分系統主任設計師常進向《科學時報》記者解釋道:“兩個設備的探測能量
X射線譜儀簡介編輯X射線譜儀設計有20路探測器,是此次載荷中探測器路數最多的系統,為有效預防多路探測器之間相互干擾,在硬/軟件設計中還專門設計了“隔離”探測器單元功能及對太陽監測器計數率的調閾指令,以提高探測器在軌長期工作的可靠性 [1] 。X射線譜儀指向月面,由16
2.探測裝置一個供探測γ光子用的固體晶體裝置包括一個“密閉的”鉈激活碘化鈉晶體,安放在光電倍增管的表面上。“密閉的”晶體上是一塊固態圓筒狀的鉈激活碘化鈉,其頂部和四周都是用鋁層包裹以避免光和濕氣,因為碘化鈉晶體易吸潮,為改善反射性,碘化鈉晶體用一玻璃片密封,并同光電倍增管的表面直接接觸,其間加些硅油
——解讀硬X射線調制望遠鏡衛星 硬X射線調制望遠鏡衛星結構示意圖 茫茫天宇間,在軌運行的航天器“中國方陣”中,除了天舟一號貨運飛船、天宮二號空間實驗室等之外,還有一顆近日發射升空的新衛星——硬X射線調制望遠鏡衛星(HXMT)。與其他航天器相比,這顆重約2.5噸,在距地面550公里的軌道上運行
伽瑪射線暴是宇宙中劇烈的爆發現象,高能伽瑪射線輻射過后的X射線、光學、射電等波段的余輝輻射研究,是確定爆發前身星和星周環境基本物理性質的關鍵。伽瑪暴通常被認為是銀河系外的輻射,而余輝的X射線線特征探測,是確認伽瑪射線暴紅移(即距離)的重要手段。伽瑪射線暴X射線能譜的發射線探測始于上世紀末,盡管極
伽瑪射線暴是宇宙中劇烈的爆發現象,高能伽瑪射線輻射過后的X射線、光學、射電等波段的余輝輻射研究,是確定爆發前身星和星周環境基本物理性質的關鍵。伽瑪暴通常被認為是銀河系外的輻射,而余輝的X射線線特征探測,是確認伽瑪射線暴紅移(即距離)的重要手段。伽瑪射線暴X射線能譜的發射線探測始于上世紀末,盡管極
原理 (XRF)儀器由激發源(X射線管)和探測系統構成。X射線管產生入射X 射線(一次射線),激勵被測樣品。樣品中的每一種元素會放射出的二次X射線,并且不同的元素所放出的二次射線具有特定的能量特性。探測系統測量這些放射出來的二次射線的能量及數量。然后,儀器軟件將控測系統所收集的信息轉換成樣
自1895年倫琴發現X射線以來,X射線及相關技術的研究和應用取得了豐碩成果。其中,1910年特征X射線光譜的發現,為X射線光譜學的建立奠定了基礎;20世紀50年代商用X射線發射與熒光光譜儀的問世,使得X射線光譜學技術進入了實用階段;60年代能量色散型X射線光譜儀的出現,促進了X射線光譜學儀器的迅
利用原級 X射線光子或其他微觀粒子激發待測物質中的原子,使之產生熒光(次級X射線)而進行物質成分分析和化學態研究的方法。在成分分析方面,X射線熒光光譜分析法是現代常規分析中的一種重要方法。 簡史 20世紀20年代瑞典的G.C.de赫維西和R.格洛克爾曾先后試圖應用此法從事定量分析,但由于當時記錄
X射線是19世紀末物理學的三大發現(X射線1895年、放射性1896年、電子1897年)之一,這一發現標志著現代物理學的誕生。由于X射線是波長介于紫外線和γ射線之間的電磁輻射,因而它具有很高的穿透本領,能穿透許多對可見光不透明的物質,基于此,可用來幫助人們進行醫學診斷和治療,或者用于工業等領域的非破
嚴俊坐在中國探月工程地面應用系統運控大廳里,桌上擺了一個閃閃發亮的衛星模型。此刻,這位探月工程首席科學家和他心愛的嫦娥二號,相隔150萬公里。 6月9日,嫦娥二號衛星飛離月球,飛往日地拉格朗日L2點,開始了新的使命。 在人類127次探月活動中,嫦娥二號不是最早的一次,卻是走得最遠的一
目前正環繞月球運行的嫦娥二號衛星,將在半年的既定時間內,完成四項科學目標:獲取分辨率優于10米的月球表面三維影像、探測月球物質成分、探測月壤特性、探測地月與近月空間環境。這四大目標,將在嫦娥一號科學探測結果的基礎上獲得更加豐富、準確的探測數據,為后續月面軟著陸及深空探測任務奠定重要的技
6月7日,中國科學院計劃財務局組織專家對高能物理研究所承擔的院重大科研裝備研制項目“二維X射線探測器的研制”進行了現場驗收。 二維X射線探測設備采用200mm×200mm氣體電子倍增器膜(GEM)為主要探測部件,項目組經過多年潛心研究,開發了相關探測器的制作工藝,解決
X射線X射線(Xray)是電磁波譜中的某特定波長范圍內的電磁波,由德國物理學家W.K.倫琴于1895年發現,故又稱倫琴射線。其特性通常用能量(keV)或波長(nm)描述。λ(nm)=1.24E(keV)X射線是原子內層電子在高速運動電子的沖擊下產生躍遷而發射的光輻射,其波長很短約介于0.001~2
一、概述現在的恐怖威脅對人們的生活影響甚大,歹徒攜槍而行、炸藥隨處爆炸、身體成了運載槍械、炸藥、毒品的隱蔽載體,可以造成非常惡性的襲擊事件。探查衣服內的武器和違禁品,最佳手段之一要推太赫茲成像探測,這種依靠飛秒激光技術發展起來的新技術,正在對未來的生活、著裝和安防產生巨大的影響。太赫茲光譜研究成像技
圖片來源:美國宇航局網站 據國外媒體報道,科學家確認了一次新的伽瑪射線暴,這是有史以來最“明亮”的伽瑪射線暴觀測記錄,伽瑪射線暴作為宇宙中最強大的能量釋放之一,其一直以來是科學家研究的重點,而本次發生的伽瑪射線暴則進一步挑戰了關于大質量恒星爆發的理論,而伽瑪射線暴形成的機制依然并不十分明朗。當前的
5月28日,中國科學院高技術研究與發展局和基礎科學局聯合組織在高能物理研究所召開了院重要方向項目“空間X射線探測技術研究”可行性論證會。高技術局趙剛處長主持會議,北京大學肖佐教授任專家組長,專家組成員分別來自中科院空間科學與應用研究中心、原子能科學研究院、中科院地質與地球物理
X射線熒光光譜儀的分析原理概括X射線熒光光譜儀(X-rayFluorescenceSpectrometer,簡稱:XRF光譜儀),是一種快速的、非破壞式的物質測量方法。X射線熒光(X-rayfluorescence,XRF)是用高能量X射線或伽瑪射線轟擊材料時激發出的次級X射線。這種現象被廣泛用于元
X射線熒光光譜儀的產品原理有哪些?X射線熒光光譜儀(X-ray Fluorescence Spectrometer,簡稱:XRF光譜儀),是一種快速的、非破壞式的物質測量方法。X射線熒光(X-ray fluorescence,XRF)是用高能量X射線或伽瑪射線轟擊材料時激發出的次級X射線。這種現象被
成分分析技術主要用于對未知物、未知成分等進行分析,通過成分分析技術可以快速確定目標樣品中的各種組成成分是什么,幫助您對樣品進行定性定量分析,鑒別、橡膠等高分子材料的材質、原材料、助劑、特定成分及含量、異物等。 【成分分析分類】 按照對象和要求:微量樣品分析 和 痕
【成分分析簡介】 成分分析技術主要用于對未知物、未知成分等進行分析,通過成分分析技術可以快速確定目標樣品中的各種組成成分是什么,幫助您對樣品進行定性定量分析,鑒別、橡膠等高分子材料的材質、原材料、助劑、特定成分及含量、異物等。 【成分分析分類】 按照對象和要求:微量樣品分析 和 痕量成分分
1.電子探針譜儀分為能譜儀和波譜儀原理:利用聚焦電子束(電子探測針)照射試樣表面待測的微小區域,從而激發試樣中元素產生不同波長(或能量)的特征X射線。用X射線譜儀探測這些X射線,得到X射線譜。根據特征X射線的波長(或能量)進行元素定性分析;根據特征X射線的強度進行元素的定量分析。適合分析材料:金屬及
XRF:X射線熒光光譜分析(X Ray Fluorescence) 人們通常把X射線照射在物質上而產生的次級X射線叫X射線熒光(X—Ray Fluorescence),而把用來照射的X射線叫原級X射線。所以X射線熒光仍是X射線。&nb
什么是XRF? 一臺典型的X射線熒光(XRF)儀器由激發源(X射線管)和探測系統構成。X射線管產生入射X射線(一次X射線),激勵被測樣品。樣品中的每一種元素會放射出二次X射線,并且不同的元素所放射出的二次X射線具有特定的能量特性或波長特性。探測系統測量這些放射出來的二次X射線的能量及數量
XRF是什么??XRF測試及XRF原理,本內容深入探討了XRF的相關內容,并做了整體的講解分析。1.什么是XRF?XRF:X射線熒光光譜分析(X Ray Fluorescence)人們通常把X射線照射在物質上而產生的次級X射線叫X射線熒光(X—Ray Fluorescence),而把用來照射的X射線
X射線熒光光譜儀是利用初級X射線光子或其他微觀離子激發待測物質中的原子,使之產生熒光(次級X射線)而進行物質成分分析和化學態研究的方法。按激發、色散和探測方法的不同,分為X射線光譜法(波長色散)和X射線能譜法(能量色散)。具有重現性好,測量速度快,靈敏度高的特點。能分析F(9)~U(92)之間所有元
關于X射線的發展歷史,早可以追溯到1895年,德國物理學家威廉·康拉德·倫琴于這一年11月發現并識別出了X射線,因此,X射線在許多國家也被稱之為倫琴射線。 隨后在1909年,英國物理學家查爾斯·格洛弗·巴克拉發現了從樣本中輻射出來的X射線與樣品原子量之間的聯系;四年之后,也即在1913年,同樣來自
X射線誘導光致變色金屬配合物 由于大氣環境的不斷惡化和高能射線源在工業、醫療、科學研究等領域的廣泛應用,射線探測和防護已成為一個重要的研究課題。傳統的探測材料往往需要多種電子配件或者多步操作才能得到探測結果,因此尋找一種能直接給出信息的探測材料具有重要意義。X射線誘導光致變
X射線熒光光譜儀 (XRF)由激發源(X射線管)和探測系統構成。X射線管產生發射X射線(一次X射線),激發被測樣品。受激發的樣品中的每一種元素都會放射出二次X射線,并且不同的元素所放射出的二次X射線具有特定的能量特性或波長特性。探測系統測量這些放射出來的二次X射線的能量及數量。然后,儀器
什么是XRF?一臺典型的X射線熒光(XRF)儀器由激發源(X射線管)和探測系統構成。X射線管產生入射X射線(一次X射線),激勵被測樣品。樣品中的每一種元素會放射出二次X射線,并且不同的元素所放射出的二次X射線具有特定的能量特性或波長特性。探測系統測量這些放射出來的二次X射線的能量及數量。然后,儀器軟