<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • Antpedia LOGO WIKI資訊

    中科院貴金屬納米結構組裝及其SERS應用研究取得進展

    近期,中科院固體物理研究所孟國文研究員課題組和美國西弗吉尼亞大學吳年強教授研究小組合作,在貴金屬納米結構組裝及其表面增強拉曼散射(SERS)應用研究方面取得新進展,相關結果以封面論文發表在《納米研究》(Nano Res. 2015, 8, 957-966)上。 由于電磁增強作用,位于貴金屬納米結構表面的分子拉曼信號會得到數量級的增強,從而產生表面增強拉曼散射效應。表面增強拉曼散射技術具有分子“指紋”識別能力,在化學和生物分析等領域擁有廣泛的應用前景。貴金屬納米結構表面具有大幅度增強局域電磁場的位置(一般位于<10nm的間隙處)稱為表面增強拉曼散射“熱點”,是表面增強拉曼散射信號的主要來源。因此,在三維空間內增加“熱點”的密集度將有效提高表面增強拉曼散射靈敏度。目前,構筑三維SERS基底的主要方式是將球形貴金屬顆粒組裝到非金屬納米結構陣列上。相關理論和實驗研究表明,與球形貴金屬納米顆粒相比,帶有棱角或尖端的貴金屬納米......閱讀全文

    固體所在對多氯聯苯拉曼信號敏感的納米結構方面取得進展

      近期,固體所科研人員在構筑對多氯聯苯敏感的納米結構表面增強拉曼散射襯底方面取得新進展,設計構筑了具有較高表面增強拉曼散射活性的襯底結構,可實現對多氯聯苯(PCB77)的有效富集與高敏感性響應。   多氯聯苯(PCBs)屬于一類持久性有機污染物,能在環境中長期殘留、長距離遷移,具有脂溶性和生物

    上海交大團隊為拉曼光譜提供新材料 信號增強一百萬倍

      近日,上海交通大學生物醫學工程學院“青年千人計劃”獲得者葉堅特別研究員和古宏晨教授共同指導博士生林俐等人組成的研究團隊在新型表面增強拉曼納米探針的制備與機理研究方面連續取得突破性進展,研究成果先后發表在材料學領域權威期刊《Nano Letters》(SCI IF = 13.592)和化

    光譜界專家分享光譜技術的新進展、新應用(二)

    ——第十九屆全國分子光譜學學術會議暨2016年光譜年會大會報告(二)  分析測試百科網訊 2016年10月28日,第十九屆全國分子光譜學學術會議暨2016年光譜年會在福州盛大開幕(詳見本網報道:光譜領域專家匯聚福州 共同探討光譜學發展),會議由中國光學學會和中國化學會主辦,中國科學院福建物質結構研究

    便攜式拉曼光譜儀的應用研究現狀及市場展望

      2017到2021年之間全球拉曼光譜市場的復合年增長率超過7%,制藥、環境和生命科學為主要的三大應用領域。在報告中,分析師指出了當前市場增長的三大驅動因素:醫療行業對藥物開發關注度的增加;食品以及食品安全市場需求的增長;金屬和礦物產業需求的不斷上升。而Research and Mark

    趙冰:半導體基底增強拉曼 生命科學單分子研究的新星

      分析測試百科網訊 光譜技術已邁過百年歷史長河。中國的光譜分析技術也可追溯到上個世紀50年代,中國的光譜技術也已經從跟跑到了在部分領域領跑的地位。在這背后,老中青科學家,克服了嚴峻的挑戰、付出了辛勤的汗水。伴隨著第21屆全國分子光譜學學術會議2020年10月底在成都即將召開,中國光學學會光譜專業委

    中科院物理所表面等離子體光子學研究取得新進展

    物理所表面等離子體光子學研究取得新進展 近日,中國科學院物理研究所、北京凝聚態物理國家實驗室的徐紅星小組在表面等離子體光子學研究中取得新進展。他們的工作得到了國家自然科學基金委、科技部、中國科學院知識創新工程的資助。 表面等離子體共振是金屬納米結構非常獨特的光學特性,對基于表面等離子體共振的納米

    物理所建立新的拉曼散射理論

      超高靈敏度探測和超高空間分辨率成像是所有光學探測和成像工具的終極奮斗目標,將二者結合起來將成為揭示微觀世界物理和化學現象及其本源機理的強大武器。拉曼光譜通過光與分子的非彈性散射光譜信息揭示分子內部的轉動和振動形態,是識別分子化學結構的有效手段,也是研究分子結構變化的重要工具,已經廣泛應用于自然科

    廈門大學院士組Nature子刊新文章

      來自廈門大學,美國喬治亞理工學院等處的研究人員研發出了一種新型檢測方法:殼層隔絕納米粒子增強拉曼光譜(SHINERS)方法,這種方法具有重要的生命科學領域應用,比如在食物安全,藥物以及環境污染檢測中發揮作用。就此研究人員介紹了這種方法的具體操作步驟,相關成果公布在Nature Protoco

    拉曼光譜技術綜述

       【摘要】本文從拉曼散射原理出發,介紹了拉曼技術的特征,以及拉曼技術的優勢和不足,從激光技術和納米技術出發介紹了當前拉曼技術的廣泛發展和應用。綜述了近年來了曼技術的主要的分析技術。涉及拉曼光譜技術的發展簡史,發展現狀和最新研究進展等方面。  1、拉曼光譜的發展簡史  印度物理學家拉曼于1928年

    環境污染物快速分析的表面增強拉曼光譜技術

    引言隨著社會與經濟的發展,環境污染越來越成為困繞著人類健康和制約社會繼續發展的嚴峻問題,多環芳烴類污染物,在環境中具有長期穩定性、可遷徙性以及生物富集性,能干擾生物內分泌系統,損壞生物的神經系統,潛在的致癌作用[1-3]。表面增強拉曼光譜(Surfaceenhanced Raman

    貴金屬納米結構組裝及其表面增強拉曼散射應用研究獲進展

      近期,中國科學院合肥物質科學研究院固體物理研究所研究員孟國文課題組和美國西弗吉尼亞大學教授吳年強研究小組合作,在貴金屬納米結構組裝及其表面增強拉曼散射(SERS)應用研究方面取得新進展,相關結果以封面論文發表在《納米研究》(Nano Res. 2015, 8, 957-966)上。  由于電磁增

    分子光譜學術會議巨獻:2018拉曼光譜新技術及應用大全

      2018年10月20日,第二十屆全國分子光譜學學術會議暨2018年光譜年會開幕式暨40周年慶典在青島舉辦(相關報道:慶祝中國光譜40年 構建中國光譜新時代)。在第一天的大會報告之后(相關報道:古人學問無遺力 今有分子光譜百家鳴),組委會也安排了精彩分會報告。分析測試百科網作為合作媒體為您帶來拉曼

    第六屆中國北京國際食品安全高峰論壇——快速檢測技術

      ——快速檢測技術專場   2013年4月1~2日,由北京食品學會以及北京食品協會主辦,太平洋國際展覽(北京)有限公司承辦的第六屆中國北京國際食品安全高峰論壇在北京國家會議中心拉開帷幕,來自高等院校、科研機構、企事業單位的國內外專家、知

    拉曼光譜、紅外光譜、XPS的工作原理和應用(一)

          拉曼光譜的原理及應用  拉曼光譜由于近幾年來以下幾項技術的集中發展而有了更廣泛的應用。這些技術是:  CCD檢測系統在近紅外區域的高靈敏性,體積小而功率大的二極管激光器,與激發激光及信號過濾整合的光纖探頭。這些產品連同高口徑短焦距的分光光度計,提供了低熒光本

    智能所利用熱敏性聚合物構筑動態表面增強拉曼散射熱點

      近期,中科院合肥智能機械研究所納米材料和環境檢測實驗室劉錦淮研究員和楊良保副研究員等提出了利用熱敏性聚合物構筑動態表面增強拉曼散射熱點(Surface Enhance Raman Scattering,SERS)的概念,并取得了研究進展。  表面增強拉曼散射效應是一種與納米結構相關的光學現象,它

    廈大教授science發表增強拉曼技術

      3月18日出版的《自然》發表的《殼層隔絕納米粒子增強拉曼光譜》,介紹了中國科學院院士、廈大化學化工學院田中群教授課題組與美國佐治亞理工學院王中林教授合作的研究成果。表面增強拉曼光譜(SERS)是一種非常強大的高靈敏分析技術,它可以探測和分析物質最表層分子,對于有些體系,它的靈敏度甚至達到檢測單分

    收購、推新、立項 拉曼光譜依舊火熱

      分析測試百科網訊 自從1928年C.V.拉曼發現拉曼散射現象以來,拉曼光譜儀器的發展可謂經歷了一波三折,直至60年代激光光源的問世,以及光電訊號轉換器件的發展才給拉曼光譜帶來新的轉機。直至今日,拉曼光譜技術發展依舊迅速。2017年,2家國際大型儀器廠商進軍拉曼市場,國產廠家也紛紛推出自己的拉曼產

    拉曼光譜技術及其在藥物分析中的應用

      【摘 要】拉曼光譜是研究化合物分子受光照射后所產生的散射光與入射光能量差與化合物振動頻率、轉動頻率間關系的分析方法。該方法可用于化學物質結構分析、晶型分析、中藥材真偽鑒別和成分分析及藥物劑型的快速鑒別等。本文簡單介紹了拉曼光譜的發展和基本原理,著重描述了拉曼光譜技術在藥物分析領域的應用

    田中群院士:拉曼光譜技術的發展前景

    ——紀念我國光譜事業30年,第十五屆全國分子光譜學學術會議專家采訪報道系列         在這個豐收的金秋季節,我國的光譜學界也迎來了屬于自己的收獲――第十五屆全國分子光譜學學術會議在京隆重召開。此次會議的規模、參會人數以及期刊論文數

    拉曼光譜的原理及應用

      拉曼光譜由于近幾年來以下幾項技術的集中發展而有了更廣泛的應用。這些技術是:  CCD檢測系統在近紅外區域的高靈敏性,體積小而功率大的二極管激光器,與激發激光及信號過濾整合的光纖探頭。這些產品連同高口徑短焦距的分光光度計,提供了低熒光本底而高質量的拉曼光譜以及體積小、容易使用的拉曼光譜儀。1. 含

    石墨烯拉曼光譜測試詳解!

      2004年英國曼徹斯特大學的A.K.Geim領導的小組首次通過機械玻璃的方法成功制備了新型的二維碳材料-石墨烯(graphene)。自發現以來,石墨烯在科學界激起了巨大的波瀾,它在各學科方面的優異性能,使其成為近年來化學、材料科學、凝聚態物理以及電子等領域的一顆新星。  就石墨烯的研究來說,確定

    表面增強拉曼光譜加速食品檢測

    圖1.  三聚氰胺在鮮牛奶中的表面增強拉曼盲測結果,2008年10月10日。 本文介紹了表面增強拉曼光譜技術在快速檢測三聚氰胺、蘇丹紅1號、孔雀石綠等違禁添加劑中的應用。利用 OptoTrace公司開發的 RamTracer系列便攜式拉曼檢測儀和擁有專利技術的表面增強試

    納米結構Si表面增強拉曼散射特性研究

    崔紹暉,符庭釗,王歡,夏洋,李超波1. 中國科學院 微電子研究所,北京 100029;2. 中國科學院大學,北京 100049;3. 集成電路測試技術北京市重點實驗室,北京 100088  摘要: 為了實現低成本高靈敏度的表面增強拉曼散射效應,制備了一種基于硅表面納米結構的表面增強拉曼散射效應(SE

    便攜式拉曼光譜儀現狀及進展

      【摘要】拉曼光譜儀廣泛應用于化學研究、高分子材料、生物醫學、藥品檢測、寶石鑒定等領域,如何進一步小型化、現場化是其未來發展的重要方向。便攜式拉曼光譜儀具有體積小、檢測方便等特點,為藥品檢測、環境檢測、安檢等實時檢測領域提供了一種無損快速檢測方法。對便攜式拉曼光譜儀的組成原理做了簡要介紹,并對國內

    美國研制出超靈敏傳感器 探測靈敏度增強10億倍

      據美國物理學家組織網3月22日(北京時間)報道,美國科學家研制出一種超靈敏傳感器,可使用其增強的拉曼散射來探測包括癌癥信號、炸藥等物質,其靈敏度比普通拉曼散射傳感器增強了10億倍。   拉曼散射是指光通過介質時由于入射光與分子運動相互作用而引起光的頻率變化,1928年由印度物理

    石墨烯拉曼光譜測試詳解 (四)表面增強拉曼效應

    當一些分子吸附在特定的物質(如金和銀)的表面時,分子的拉曼光譜信號強度會出現明顯地增幅,我們把這種拉曼散射增強的現象稱為表面增強拉曼散射(Surface-enhanced Raman scattering,簡稱SERS)效應。SERS技術克服了傳統拉曼信號微弱的缺點,可以使拉曼強度增大幾個數

    福州分子光譜會 拉曼光譜技術新進展、新技術薈萃

      分析測試百科網訊 2016年10月29日,在第十九屆全國分子光譜學學術會議暨2016年光譜年會召開期間,會務組組織了拉曼光譜、紅外光譜、原子光譜分會場,讓各位到會學者進行交流學習。在“拉曼光譜及相關光譜技術的研究進展”分會現場人頭攢動,來自多個領域的拉曼光譜專家及相關廠商介紹了拉曼光譜的新技術、

    深圳大學在拉曼納米激光研究方面取得重要進展

      在國家自然科學基金項目(項目編號:51502175,61575129,11304206)資助下,深圳大學光電工程學院阮雙琛教授團隊在拉曼納米激光研究方面取得重要進展,研究成果近期以“A Thresholdless Tunable Raman Nanolaser using a ZnO–Graph

    長春光機所大面積可控高活性拉曼光譜增強基底研究獲進展

      近日,中國科學院長春光機所應用光學國家重點實驗室在大面積可控高活性拉曼光譜增強基底的研究取得進展:世界上首次利用溶致液晶軟模板可控生長出大面積均勻的高活性表面拉曼散射增強基底,增強因子達到國際先進水平。相關結果發表在近期的Scientific Reports上(2015, vol. l5, 12

    使用表面增強拉曼光譜技術快速檢測毒品實例

    技術背景毒品的快速檢測對于推斷毒品來源、抑制毒品傳播和打擊毒品犯罪都起著重要作用。如今公安以及海關等部門通常采用先快速篩查、再確證的方法查毒,也就是先用試劑盒或試紙條等快速判斷毒品是否存在,然后用氣相色譜-質譜聯用技術進行最終的確認。試劑盒或試紙條一般基于膠體金免疫層析技術,具有簡便和低

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频