對于血漿特異酶,細胞內酶合成下降是引起血中酶變化的重要因素,這些酶大多在肝臟合成,因此當肝功能障礙時,膽堿酯酶常與白蛋白同時下降。酶合成減少和變異還見于不少遺傳疾病,由于酶基因變異,可引起特定的酶合成減少乃至消失,如肝-豆狀核綜合征患者,血中銅氧化酶活性可明顯下降乃至于零。在增生性疾病如骨骼疾病時,可因為骨細胞增生,合成分泌更多的ALP,醫學教|育網搜集整理引起血中此酶升高。惡性腫瘤患者血中酶升高有一部分可能與腫瘤細胞中酶合成增加有關,如前列腺癌細胞可產生大量酸性磷酸酶。酶的誘導作用也可引起血中一些酶濃度增高,最明顯例子是服用苯巴比妥后常可引起肝中GGT合成增加,血中濃度升高并不意味著肝細胞有什么病理變化,停藥后GGT就會下降至正常。乙醇、巴比妥類、杜冷丁類以及雙苯內酰脲類藥物都有此種誘導作用,誘導的酶除GGT外還可以是ALP.......閱讀全文
一、RNA 制備 模板mRNA 的質量直接影響到cDNA 合成的效率。由于mRNA 分子的結構特點,容易受RNA 酶的攻擊反應而降解,加上RNA 酶極為穩定且廣泛存在,因而在提取過程中要嚴格防止RNA 酶的污染,并設法抑制其活性,這是本實驗成敗的關鍵。所有的組織中均存在RNA 酶,人
分子雜交技術 互補的核苷酸序列通過Walson-Crick 堿基配對形成穩定的雜合雙鏈分子DNA 分子的過程稱為雜交。雜交過程是高度特異性的,可以根據所使用的探針已知序列進行特異性的靶序列檢測。雜交的雙方是所使用探針和要檢測的核酸。該檢測對象可以是克隆化的基因組DNA,也可以是細胞總DN
疼痛是一種由組織損傷產生的令人不愉快的感覺和情緒體驗。藥物治療疼痛,存在長期服藥、療效有限及副作用大等問題。研究表明,疼痛是遺傳和環境因素相互作用的結果,疼痛反應具有遺傳學特征和復雜性。 疼痛敏感性增加和慢性疼痛患病率下降由部分基因調控。其中,四氫生物蝶呤(tetrahydrobiopteri
一、概述 前面已經介紹了核酸分子單鏈之間有互補的堿基順序,通過堿基對之間非共價鍵(主要是氫鍵)的形成即出現穩定的雙鏈區,這是核酸分子雜交的基礎。雜交分子的形成并不要求兩條單鏈的堿基順序完全互補,所以不同來源的核酸單鏈只要彼此之間有一定程度的互補順序(即某種程度的同源性)就可以形成雜交雙鏈。分子雜交
一、概述 前面已經介紹了核酸分子單鏈之間有互補的堿基順序,通過堿基對之間非共價鍵(主要是氫鍵)的形成即出現穩定的雙鏈區,這是核酸分子雜交的基礎。雜交分子的形成并不要求兩條單鏈的堿基順序完全互補,所以不同來源的核酸單鏈只要彼此之間有一定程度的互補順序(即某種程度的同源性)就可以形成雜交雙鏈。分子雜交
多肽合成概述: 1963年,R.B.Merrifield[1]創立了將氨基酸的C末端固定在不溶性樹脂上,然后在此樹脂上依次縮合氨基酸,延長肽鏈、合成蛋白質的固相合成法,在固相法中,每步反應后只需簡單地洗滌樹脂,便可達到純化目的.克服了經典液相合成法中的每一步產物都需純化的困難,為自動化合成肽奠定了基
第一節 概述 聚合酶鏈反應或多聚酶鏈反應(Polymerase Chain Reaction, PCR),又稱無細胞克隆技術(“free bacteria”cloning technique),是一種對特定的DNA片段在體外進行快速擴增的新方法。該方法一改傳統分子克隆技術的模式,不通過活細胞,操作
第一章質粒DNA 的分離、純化和鑒定 第二章DNA 酶切及凝膠電泳 第三章大腸桿菌感受態細胞的制備和轉化 第四章RNA 的提取和cDNA 合成 第五章重組質粒的連接、轉化及篩選 第六章基因組DNA 的提取 第七章RFLP 和RAPD 技術 第八章聚合酶鏈式反應(PCR)擴增和擴增產物克隆 第九章分
自20世紀80年代以來,單克隆抗體作為治療性藥物得到快速的發展。與小分子藥物相比,單克隆抗體的優勢在于具有較高的靶向特異性、毒副作用小和半衰期長的優勢。而不足之處包含復雜的生產、純化過程,以及翻譯后修飾(PTM)導致單克隆抗體結構和功能的異質性。 在這些翻譯后修飾的情況中,Fc區域的糖基化是導
自20世紀80年代以來,單克隆抗體作為治療性藥物得到快速的發展。與小分子藥物相比,單克隆抗體的優勢在于具有較高的靶向特異性、毒副作用小和半衰期長的優勢。而不足之處包含復雜的生產、純化過程,以及翻譯后修飾(PTM)導致單克隆抗體結構和功能的異質性。 在這些翻譯后修飾的情況中,Fc區域的糖基化是導
CRISPR系統對于原核生物免疫系統對抗入侵元素發揮關鍵的作用,也 被設計成促進真核生物基因組的靶向基因編輯。近期,來自中科院深圳先進技術研究院、湖北工業大學和吉林大學等處的研究人員,在《Scientific Reports》發表一項研究,提出了一種精確的從頭CRISPR注釋程序——CRISPR
序 言 John Toffaletti博士:紐約杜克大學醫學中心血氣室主任,血氣研究領域久負盛名,發表了一篇題為“全血乳酸濃度的測定及重要臨床意義” 的綜述,該文章從乳酸的定義、檢測的意義、臨床應用及樣品分析前處理細節做了一個非
序 言 John Toffaletti博士:紐約杜克大學醫學中心血氣室主任,血氣研究領域久負盛名,發表了一篇題為“全血乳酸濃度的測定及重要臨床意義” 的綜述,該文章從乳酸的定義、檢測的意義、臨床應用及樣品分析前處理細
一、概述T7 DNA聚合酶最初具有5'→3'聚合酶活性以及單鏈和雙鏈3'→5'外切酶活性。當T7 DNA聚合酶用適當方法處理后,可使3'→5'外切酶活力明顯下降。改造后的T7 DNA聚合酶又稱T7測序酶。使用T7測序酶得到的測序數據具有在每個堿
近年來隨著生物技術的不斷發展,出現了許多克隆新基因的方法和手段,如圖譜克隆技術、轉座子標簽技術、mRNA差異顯示技術二基因組減法技術以及cDNA文庫篩選技術等。但上述方法人多具有實驗周期長、技術步驟煩瑣且工作量大等特點。cDNA末端快速擴增技術(rapid amplification of cD
近年來隨著生物技術的不斷發展,出現了許多克隆新基因的方法和手段,如圖譜克隆技術、轉座子標簽技術、mRNA差異顯示技術二基因組減法技術以及cDNA文庫篩選技術等。但上述方法人多具有實驗周期長、技術步驟煩瑣且工作量大等特點。cDNA末端快速擴增技術(rapid amplification of cDNA
近年來隨著生物技術的不斷發展,出現了許多克隆新基因的方法和手段,如圖譜克隆技術、轉座子標簽技術、mRNA差異顯示技術二基因組減法技術以及cDNA文庫篩選技術等。但上述方法人多具有實驗周期長、技術步驟煩瑣且工作量大等特點。cDNA末端快速擴增技術(rapid amplification of cDNA
一、核酸分子雜交技術1961年Hall開拓了液相核酸雜交技術的研究,其基本原理是利用核酸分子單鏈之間有互補的堿基順序,通過堿基對之間非共價鍵的形成,出現穩定的雙鏈區,形成雜交的雙鏈。自此以后,由于分子生物學技術的迅猛發展,特別是70年代末到80年代初,分子克隆、質粒和噬菌體DNA的構建成功,核酸自動
一、核酸分子雜交技術1961年Hall開拓了液相核酸雜交技術的研究,其基本原理是利用核酸分子單鏈之間有互補的堿基順序,通過堿基對之間非共價鍵的形成,出現穩定的雙鏈區,形成雜交的雙鏈。自此以后,由于分子生物學技術的迅猛發展,特別是70年代末到80年代初,分子克隆、質粒和噬菌體DNA的構建成功,核酸自動
2013年5月16-19日,由中國化學會主辦、廈門大學承辦、復旦大學、浙江大學協辦的第八屆全國微全分析系統學術會議、第三屆全國微納尺度生物分離分析學術會議暨第五屆國際微化學與微系統學術會議在美麗的海濱城市廈門隆重召開。此次會議旨在為從事相關領域基礎、應用和開發研究的學者提供多學科交叉的
本世紀初臨床就開始測定體液中的酶來診斷疾病,如Wohlgemuth早在1908年就測定尿液中淀粉酶(AMY)以診斷急性胰腺炎;30年代臨床測定堿性磷酸酶(ALP)用于診斷骨骼疾病,隨后發現不少肝膽疾病特別在出現梗阻性黃疸時此酶常明顯升高。這些酶成為當時臨床實驗室的常規測定項目,直到60年代ALP仍
基因敲除可以說是基因組 學、細胞分離培養以及轉基因技術的組合。那么基因敲除的原理是什么呢? 基因敲除的方法有哪些呢?在此,做個小結,以供大家學習。一.概述:基因敲除是自80年代末以來發展起來的一種新型分子 生物學技術,是通過一定的途徑使機體特定的基因失活或缺失的技術。通常意義上的基因敲除主要是應用D
RNA干擾載體主要用來研究基因表達調控,RNA干擾技術已已被廣泛用于基因結構功能研究和傳染性疾病及基因治療領域,進行RNA干擾實驗首先是構建RNA干擾載體,本文以pRI系列載體為例論述了干擾載體的構建的實驗流程。產品技術背景pRI系列載體是基于III類rna聚合酶啟動子:人類H1啟動子的專用于哺乳動
本世紀初臨床就開始測定體液中的酶來診斷疾病,如Wohlgemuth早在1908年就測定尿液中淀粉酶(AMY)以診斷急性胰腺炎;30年代臨床測定堿性磷酸酶(ALP)用于診斷骨骼疾病,隨后發現不少肝膽疾病特別在出現梗阻性黃疸時此酶常明顯升高。這些酶成為當時臨床實驗室的常規測定項目,直到60年代ALP仍是
產品技術背景pRI系列載體是基于III類RNA聚合酶啟動子:人類H1啟動子的專用于哺乳動物細胞RNA干擾的載體。H1啟動子在哺乳動物細胞內合成類似siRNA分子的小分子RNA。由于H1啟動子有精確的轉錄起始位點和終止信號,H1啟動子轉錄產物精確生成人工設計的shRNA,shRNA經過RISC剪切后形
幽門螺桿菌研究進展幽門螺桿菌及其感染 1 概述 胃細菌學的研究,長期來是一個被忽視的領域。1983年Marshall和Warren從慢性活動性胃炎患者胃粘膜活檢標本中分離到幽門螺桿菌(Helicobacter pylori,Hp)是對這一領域重要的突破。此后不久即在國際消化病學界引起了巨大轟動,
單克隆抗體(MAb)是針專一的抗原決定簇產生的抗體,單克隆技術又名雜交瘤技術起源于1975年,由G.K?hler和Milstein創立。主要原理是利用產生抗體的B細胞與腫瘤細胞雜交融合成雜交瘤細胞,生產抗體。單克隆抗體制備過程有以下幾個步驟,下面講簡要介紹。1、免疫動物 免疫動物是用目的抗原免疫小鼠
分析測試百科網訊 2015年9月9日-12日,第五屆金屬組學國際研討會在北京西郊賓館召開,會議由中國科學院科院高能物理研究所、清華大學共同主辦,來自世界各地的近200位金屬組學領域的專家學者匯聚一堂,探討金屬組學的最新進展及未來展望。 9月10日下午,大會報告精彩依舊,馬薩
通常利用 T4 噬菌體多核苷酸激酶催化的磷酸化反應進行寡核苷酸的標記。但有時需要標記比活度更高的放射性標記的探針,最理想的情況下,磷酸化反應中每一個寡核苷酸分子上有一個 32P 原子摻人。而用大腸桿菌 DNA 聚合酶 IKlenow 片段合成與寡核苷酸互補的一條 DNA 鏈,可獲得更高比活
為了使您更好的了解臨床檢驗技師的相關內容,醫學教育網特搜集相關資料供大家參考。 細胞質的概述 細胞質是由細胞膜包裹著的無色透明溶膠性物質。細胞質是細菌新陳代謝的重要場所。細胞質內有核蛋白體、質粒、胞質顆粒。細胞質含豐富的酶系統,參與營養物質的合成與分解,故細胞質是細菌蛋白質和酶類合成的重要場