選擇基因和報告基因都可以看做是標記基因,都起著標記目的基因是否成功轉化的作用,但是它們又有著各自的特點。選擇基因(又稱選擇標記基因),主要是一類編碼可使抗生素或除草劑失活的蛋白酶基因,這種基因在執行其選擇功能時,通常存在檢測慢(蛋白酶作用需要時間)、依賴外界篩選壓力(如抗生素、除草劑)等缺陷。而報告基因則是指其編碼產物能夠被快速測定、且不依賴于外界壓力的一類基因。理想的報告基因通常具備如下基本要求:①、受體細胞中不存在相應內源等位基因的活性;②、它的產物是唯一的,且不會損害受體細胞;③、具有快速、廉價、靈敏、定量和可重復性的檢測特性。常用的報告基因有氯霉素乙酰轉移酶基因(cat)、熒光素酶基因(luc)、β-葡萄糖苷酸酶基因(gus)等。......閱讀全文
選擇基因和報告基因都可以看做是標記基因,都起著標記目的基因是否成功轉化的作用,但是它們又有著各自的特點。選擇基因(又稱選擇標記基因),主要是一類編碼可使抗生素或除草劑失活的蛋白酶基因,這種基因在執行其選擇功能時,通常存在檢測慢(蛋白酶作用需要時間)、依賴外界篩選壓力(如抗生素、除草劑)等缺陷。而報告
引入“選擇基因”和“報告基因”的概念 選擇基因和報告基因都可以看做是標記基因,都起著標記目的基因是否成功轉化的作用,但是它們又有著各自的特點。 選擇基因(又稱選擇標記基因),主要是一類編碼可使抗生素或除草劑失活的蛋白酶基因,這種基因在執行其選擇功能時,通常存在檢測慢(蛋白酶作用需要時間)、依
探針是能與特異靶分子反應并帶有供反應后檢測的合適標記物的分子。利用核苷酸堿基順序互補的原理,用特異的基因探針即識別特異堿基序列的有標記的一段單鏈DNA(或RNA)分子,與被測定的靶序列互補,以檢測被測靶序列的技術叫核酸探針技術。探針制備就是將目的基因進行標記。特異性探針有三種形式——cDNA、R
標記基因,原本是基因工程的專屬名詞,但是它已經成為一種基本的實驗工具,廣泛應用于分子生物學、細胞生物學、發育生物學等方面的研究。 標記基因是一種已知功能或已知序列的基因,能夠起著特異性標記的作用。在基因工程意義上來說,它是重組DNA載體的重要標記,通常用來檢驗轉化成功與否;在基因定位意義上來說
1、“作為重組DNA載體的重要標記”舉例:大腸桿菌的某種質粒具有青霉素抗性基因(該基因可以認為是標記基因),當這種質粒與外源DNA組合在一起形成重組質粒,并被轉入受體細胞后,就可以根據受體細胞是否具有青霉素抗性來判斷受體細胞是否獲得了目的基因。當人們用選擇培養基(比如含有青霉素的培養基),來培養
免疫標記法及其分類1.熒光免疫法原理是應用一對單克隆抗體的夾心法。底物用磷酸-4-甲基傘形酮,檢測產物發出的熒光,熒光強度與Mb濃度呈正比,可在8min內得出結果。結果以Mb每小時釋放的速率表示(△Mb)表示。該法重復性好,線性范圍寬,具有快速、敏感、準確的特點。以雙抗夾心法為例,首先將特異性抗體與
①缺口平移標記法。利用的是DNA聚合酶I能修復DNA鏈的功能。該法先由DNaseI在DNA雙鏈上隨機切出切口,然后DNA聚合酶I沿缺口水解5′端核苷酸,同時在3′端修復加入被標記核苷酸,切口平行推移。缺口平移法快速、簡便、成本相對較低、比活性相對較高、標記均勻,多用于大分子DNA標記,(>100
為了確定探針是否與相應的基因組DNA雜交,有必要對探針加以標記,以便在結合部位獲得可識別的信號,通常采用放射性同位素32P標記探針的某種核苷酸α磷酸基。但近年來已發展了一些用非同位素如生物素-親合素系統、地高辛配體等作為標記物的方法。非同位素標記的優點是保存時間較長,而且避免了同位素的污染。最常
結構基因基因中編碼RNA或蛋白質的堿基序列。(1)原核生物結構基因:連續的,RNA合成不需要剪接加工;(2)真核生物結構基因:由外顯子(編碼序列)和內含子(非編碼序列)兩部分組成。非結構基因結構基因兩側的一段不編碼的DNA片段(即側翼序列),參與基因表達調控。(1)順式作用元件:能影響基因表達,但不
一、標記基因和報告基因的概念 標記基因(marker gene),是一種已知功能或已知序列的基因,能夠起著特異性標記的作用。標記基因是選擇標記基因的簡稱,是指其編碼產物能夠使轉化的細胞、組織具有對抗生素等的抗性,或者使轉化細胞、組織具有代謝的優越性。在培養基中加入抗生素等選擇試劑的條件下,非轉化的細