JACS:季銨哌嗪取代羅丹明具有亮度增強的超分辨率成像
近年來,先進的熒光成像技術得到了快速的發展,但是與成像技術的治療進化相比,具有足夠亮度和光穩定性的染料的發展仍然緩慢,如單分子定位顯微鏡(SMLM),其分辨率超過了衍射極限。但是熒光團亮度不足成為了超分辨顯微鏡發展的一大瓶頸,這也對體內細胞動力學研究構成了重要的限制。比如羅丹明染料被廣泛應用,但由于在光激發下形成扭曲的分子內電荷轉移(TICT),許多羅丹明染料出現亞于最佳亮度的現象。因此,迫切需要在合理的分子設計策略的基礎上開發出明亮、耐光的染料。大連理工大學肖義、楊偉課題組和新加坡科技設計大學劉曉剛課題組開發了出一類具有優異量子產率(Φ= 0.93) 和優越的亮度(ε × Φ = 8.1 × 104 L·mol?1·cm?1)的季銨哌嗪取代羅丹明,防止TICT利用電子誘導效應,還成功地將這些羅丹明用于細胞微管、活細胞細胞膜和溶酶體固定后的超分辨率成像。最后,證明了這種策略可以推廣到其他種類的熒光團,從而大大提高了量子產量。......閱讀全文
JACS:季銨哌嗪取代羅丹明具有亮度增強的超分辨率成像
近年來,先進的熒光成像技術得到了快速的發展,但是與成像技術的治療進化相比,具有足夠亮度和光穩定性的染料的發展仍然緩慢,如單分子定位顯微鏡(SMLM),其分辨率超過了衍射極限。但是熒光團亮度不足成為了超分辨顯微鏡發展的一大瓶頸,這也對體內細胞動力學研究構成了重要的限制。比如羅丹明染料被廣泛應用,但
LSM?超分辨率和靈敏度。
超分辨率和靈敏度。?? ? ? 利用并行光譜采集和高速GPU去卷積的獨特組合,提高圖像質量。 Airyscan在橫向120nm和軸向350nm的尺度上提供了高靈敏度的完美光學截面和超分辨率。這超越了去卷積方法,保留了在封閉針孔中通常被屏蔽了的寶貴的發射光信號,并實現了更高的分辨率
超分辨率熒光顯微技術的意義
利用超高分辨率顯微鏡,可以讓科學家們在分子水平上對活體細胞進行研究,如觀察活細胞內生物大分子與細胞器微小結構以及細胞功能如何在分子水平表達及編碼,對于理解生命過程和疾病發生機理具有重要意義。
超分辨率熒光顯微技術的技術獲獎
2014年10月8日,2014年度諾貝爾化學獎揭曉,美國科學家埃里克·白茲格、威廉姆·艾斯科·莫爾納爾和德國科學家斯特凡·W·赫爾三人獲得。官方稱,該獎是為表彰他們在超分辨率熒光顯微技術領域取得的成就 。
2016年《科學》綜述:超分辨率顯微技術
從列文虎克到21世紀,顯微鏡由一個看似牢不可破的原則所控制:分辨兩個對象的能力受限于觀察它們的光波波長。 但在2000年,研究人員顯示出, 這種所謂的衍射極限可以被打破, 在接下來的十年中揭示了從 GSDIM和 PALM到 SIM、STED 和 STORM 的一系列像“字母湯”一樣的超分辨率技術 。
鄭州大學王朝陽JACS發文:超原子銀納米簇研究獲突破
分析測試百科網訊近日,《美國化學會志》(Journal of the American Chemical Society,JACS,影響因子為13.18)報道了鄭州大學化學與分子工程學院臧雙全教授課題組的最新研究成果:《原子尺寸精確的超原子銀納米簇的精準修飾與定向組裝》(Atomically P
季銨哌嗪如何實現熒光超分辨率成像?
近年來,先進的熒光成像技術得到了快速的發展,但是與成像技術的治療進化相比,具有足夠亮度和光穩定性的染料的發展仍然緩慢,如單分子定位顯微鏡(SMLM),其分辨率超過了衍射極限。但是熒光團亮度不足成為了超分辨顯微鏡發展的一大瓶頸,這也對體內細胞動力學研究構成了重要的限制。比如羅丹明染料被廣泛應用,但
超分辨率激光共聚焦顯微鏡
超分辨率激光共聚焦顯微鏡是一種用于化學、生物學領域的分析儀器,于2018年7月24日啟用。 技術指標 1.在所有掃描方式下,均可以進行360°掃描旋轉,0.1°步進,同時可以變倍以及移動掃描區域的中心。 2.掃描光學變倍≥40X,最好縮小≤0.6倍。 3.最大掃描分辨率≥8000 x 800
活細胞超分辨率顯微技術研究獲進展
2016年12月31日,中國科學院生物物理研究所徐平勇課題組、中國科學院計算技術研究所張法課題組以及美國科學院院士HHMI研究員Jennifer Lippincott-Schwartz合作在《細胞研究》(Cell Research)在線發表了題為Live-cell single molecule
歐盟ChipScope項目:微型超分辨率光學顯微鏡
想象一下,把顯微鏡縮小,然后將其與芯片集成在一起,就可以使用它實時觀察活細胞內部。如果像今天的智能手機相機一樣,可以將這種微型顯微鏡也集成到電子產品中,那不是很好嗎?如果醫生設法使用這種工具在偏遠地區進行診斷而又不需要大型、笨重和敏感的分析設備,該怎么辦?歐盟資助的ChipScope項目在實現這些目