關于X射線熒光分析儀的基本原理介紹
X射線熒光光譜儀通常可分為兩大類,波長色散X射線熒光光譜儀和能量(energy)色散X射線熒光光譜儀; 波長色散光譜儀主要部件包括激發源、分光晶體和測角儀、探測器等,而能量色散光譜儀則只需激發源和探測器和相關(related)電子與控制部件,相對簡單。 X射線熒光分析儀基本原理: 當能量高于原子內層電子結合能的高能X射線與原子發生碰撞時,驅逐一個內層電子而出現一個空穴; 使整個原子體系處于不穩定的激發態,激發態原子壽命約為10-12-10-14s,然后自發地由能量高的狀態躍遷到能量低的狀態。 這個過程稱為馳豫過程。馳豫過程既可以是非輻射躍遷,也可以是輻射躍遷。 當較外層的電子躍遷到空穴時,所釋放的能量隨即在原子內部被吸收而逐出較外層的另一個次級光電子; 此稱為俄歇效應,亦稱次級光電效應或無輻射效應,所逐出的次級光電子稱為俄歇電子。它的能量是特征的,與入射輻射的能量無關......閱讀全文
關于X射線熒光分析儀的基本原理介紹
X射線熒光光譜儀通常可分為兩大類,波長色散X射線熒光光譜儀和能量(energy)色散X射線熒光光譜儀; 波長色散光譜儀主要部件包括激發源、分光晶體和測角儀、探測器等,而能量色散光譜儀則只需激發源和探測器和相關(related)電子與控制部件,相對簡單。 X射線熒光分析儀基本原理
X射線熒光分析儀的基本原理介紹
X射線熒光分析儀基本原理: 當能量高于原子內層電子結合能的高能X射線與原子發生碰撞時,驅逐一個內層電子而出現一個空穴,使整個原子體系處于不穩定的激發態,激發態原子壽命約為10-12-10-14s,然后自發地由能量高的狀態躍遷到能量低的狀態。這個過程稱為馳豫過程。馳豫過程既可以是非輻射躍遷,
X射線熒光分析儀的介紹
X射線熒光分析儀主要由激發、色散(波長和能量色散)、探測、記錄和測量以及數據處理等部分組成。X射線光譜儀與X射線能譜儀兩類分析儀器有其相似之處,但在色散和探測方法上卻完全不同。在激發源和測量裝置的要求上,兩類儀器也有顯著的區別。X射線熒光分析儀按其性能和應用范圍,可分為實驗室用的X射線熒光光譜儀
X射線熒光分析的基本原理
熒光,顧名思義就是在光的照射下發出的光。X射線熒光就是被分析樣品在X射線照射下發出的X射線,它包含了被分析樣品化學組成的信息,通過對上述X射線熒光的分析確定被測樣品中各組份含量的儀器就是X射線熒光分析儀。從原子物理學的知識我們知道,對每一種化學元素的原子來說,都有其特定的能級結構,其核外電子都以各自
X射線熒光分析的基本原理
當能量高于原子內層電子結合能的高能X射線與原子發生碰撞時,驅逐一個內層電子而出現一個空穴,使整個原子體系處于不穩定的激發態,激發態原子壽命約為10-12-10-14s,然后自發地由能量高的狀態躍遷到能量低的狀態。這個過程稱為馳豫過程。馳豫過程既可以是非輻射躍遷,也可以是輻射躍遷。當較外層的電子躍
X射線熒光分析的基本原理
熒光,顧名思義就是在光的照射下發出的光。X射線熒光就是被分析樣品在X射線照射下發出的X射線,它包含了被分析樣品化學組成的信息,通過對上述X射線熒光的分析確定被測樣品中各組份含量的儀器就是X射線熒光分析儀。從原子物理學的知識我們知道,對每一種化學元素的原子來說,都有其特定的能級結構,其核外電子都以各自
X射線熒光分析的基本原理
當能量高于原子內層電子結合能的高能X射線與原子發生碰撞時,驅逐一個內層電子而出現一個空穴,使整個原子體系處于不穩定的激發態,激發態原子壽命約為10-12-10-14s,然后自發地由能量高的狀態躍遷到能量低的狀態。這個過程稱為馳豫過程。馳豫過程既可以是非輻射躍遷,也可以是輻射躍遷。當較外層的電子躍
X射線熒光分析的基本原理
熒光,顧名思義就是在光的照射下發出的光。X射線熒光就是被分析樣品在X射線照射下發出的X射線,它包含了被分析樣品化學組成的信息,通過對上述X射線熒光的分析確定被測樣品中各組份含量的儀器就是X射線熒光分析儀。從原子物理學的知識我們知道,對每一種化學元素的原子來說,都有其特定的能級結構,其核外電子都以各自
關于X射線熒光光譜的介紹
X射線熒光光譜(XRF, X Ray Fluorescence)是通常把X射線照射在物質上而產生的次級X射線叫X射線熒光(X-Ray Fluorescence),受激發的樣品中的每一種元素會放射出X射線熒光,并且不同的元素所放射出的X射線熒光具有特定的能量特性或波長特性。探測系統測量這些放射出來
關于X射線熒光分析的分類介紹
1、根據分光方式的不同,X射線熒光分析可分為能量色散和波長色散兩類,也就是通常所說的能譜儀和波譜儀,縮寫為EDXRF和WDXRF。 通過測定熒光X射線的能量實現對被測樣品的分析的方式稱之為能量色散X射線熒光分析,相應的儀器稱之為能譜儀,通過測定熒光X射線的波長實現對被測樣品分析的方式稱之為波長
簡述X射線熒光分析的基本原理
熒光,顧名思義就是在光的照射下發出的光。X射線熒光就是被分析樣品在X射線照射下發出的X射線,它包含了被分析樣品化學組成的信息,通過對上述X射線熒光的分析確定被測樣品中各組份含量的儀器就是X射線熒光分析儀。 從原子物理學的知識我們知道,對每一種化學元素的原子來說,都有其特定的能級結構,其核外電子
X射線熒光分析儀的優點
對于已壓鑄好的機械零件可以做到無損檢測,而不毀壞樣品。 測試速率高,可以在較少時間內進行大量樣品測試,分析結果可以通過計算機直接連網輸出。 分析速度較快。 對于純金屬可采用無標樣分析,精度能達分析要求。 不需要專業實驗室與操作人員,不引入其它對環境有害的物質。
X射線熒光分析儀的缺點
關于非金屬和界于金屬和非金屬之間的元素很難做到精確檢測。在用基本參數法測試時,如果測試樣品里含有C、H、O等元素,會出現誤差。 不能作為仲裁分析方法,檢測結果不能作為國家認證根據,不能區分元素價態。 對于鋼鐵等含有非金屬元素的合金,需要代表性樣品進行標準曲線繪制,分析結果的精確性是建立在標樣
X射線熒光分析儀的優點
對于已壓鑄好的機械零件可以做到無損檢測,而不毀壞樣品。 測試速率高,可以在較少時間內進行大量樣品測試,分析結果可以通過計算機直接連網輸出。 分析速度較快。 對于純金屬可采用無標樣分析,精度能達分析要求。 不需要專業實驗室與操作人員,不引入其它對環境有害的物質。
X射線熒光分析儀的缺點
關于非金屬和界于金屬和非金屬之間的元素很難做到精確檢測。在用基本參數法測試時,如果測試樣品里含有C、H、O等元素,會出現誤差。 不能作為仲裁分析方法,檢測結果不能作為國家認證根據,不能區分元素價態。 對于鋼鐵等含有非金屬元素的合金,需要代表性樣品進行標準曲線繪制,分析結果的精確性是建立在標樣
關于X-射線熒光儀真空系統的介紹
真空系統是 X射線熒光光譜儀的重要組成部分。儀器工作時,光譜室被抽成真空狀態,以減少空氣對 X 射線的干擾,提高儀器的分辨率。 真空系統容易出問題的地方主要有 3 部分:真空泵、樣品室、光譜室。分析樣品時,在快門打開之前,真空泵是與樣品室相通的。當采用壓片法進行分析時,由于抽真空會使一部分
X射線熒光分析的介紹
X射線熒光分析是確定物質中微量元素的種類和含量的一種方法,又稱X射線次級發射光譜分析,是利用原級X射線光子或其它微觀粒子激發待測物質中的原子,使之產生次級的特征X射線(X光熒光)而進行物質成分分析和化學態研究。 1948年由H.費里德曼(H.Friedmann)和L.S.伯克斯(L.S.Bir
X射線熒光分析儀的基本信息介紹
X 射線熒光光譜儀的不斷完善和發展所帶動的X 射線熒光分析技術已被廣泛用于冶金、地質、礦物、石油、化工、生物、醫療、刑偵、考古等諸多部門和領域。X 射線熒光光譜分析不僅成為對其物質的化學元素、物相、化學立體結構、物證材料進行試測,對產品和材料質量進行無損檢測,對人體進行醫檢和微電路的光刻檢驗等的
關于X射線熒光分析的簡介
X光熒光分析又稱X射線熒光分析(XRF)技術,即是利用初級x射線光子或其他微觀粒子激發待測樣品中的原子,使之產生熒光(次級x射線)而進行物質成分分析和化學形態研究的方法。
關于X射線熒光分析儀的選型注意事項
強調"熒光",許多用戶誤認為只有用X光管作為激發源的管激發儀器才是X熒光儀,一味地強調所謂"熒光"。事實上,如前所述,無論是采用X光管還是采用放射性同位素源作為激發源,只要是由X射線激發、通過測定被測樣品發出的熒光X射線得出其化學成分及含量的儀器,都是X熒光分析儀。 源激發和管激發各有優缺點。
手持式合金分析儀X射線熒光(XRF)的基本原理
X熒光光譜儀是根據X射線熒光光譜的分析方法配置的多通道X射線熒光光譜儀,它能夠分析固體或粉狀樣品中各種元素的成分含量。 X射線熒光(XRF)能夠測定周期表中多達83個元素所組成的各種形式和性質的導體或非導體固體材料,其中典型的樣品有玻璃、塑料、金屬、礦石、耐火材料、水泥和地質物料等。凡是能和x射線
關于X-射線熒光儀檢測晶體的清洗介紹
晶體的清洗:LiF、Ge 使用二甲苯清洗;PET、TAP 使用丙酮清洗,但是二者表面鍍有 C,以防止晶體潮解,使用的時候不要擦掉,洗后如果失去 C,晶體就容易損壞。另外,清洗時應該將晶體在容器洗液中來回晃動,一般不要擦拭。 晶體有很大的溫度系數,所以,反射角很大的元素將很容易受溫度影響。A
關于X-射線熒光儀探測器的介紹
流(充)氣正比計數器和閃爍計數器用于探測不同的元素,其中充氣正比計數器一般是填充 Ar、Kr 等惰性氣體;一定要注意此類計數器頭部玻璃很容易破碎,不能碰撞;長期使用后,充氣正比計數器頭部容易吸附灰塵影響計數,應該定期清理。流氣正比計數器是讓探測器氣體流動,一般是用1 μm~6 μm 厚的聚丙烯
選擇X射線熒光分析儀的誤區
強調“熒光”,許多用戶誤認為只有用X光管作為激發源的管激發儀器才是X熒光儀,一味地強調所謂“熒光”。事實上,如前所述,無論是采用X光管還是采用放射性同位素源作為激發源,只要是由X射線激發、通過測定被測樣品發出的熒光X射線得出其化學成分及含量的儀器,都是X熒光分析儀。 源激發和管激發各有優缺點。
選購X射線熒光分析儀的誤區
聽別人多,看自己少。用戶在設備選型時經常會開展一些調研考察,一方面了解一些各種儀器及廠家的基本情況,作一些相互比較;另一方面會去一些與自己情況類似的用戶那里考察。這當然是必要的。但最重要的還是要根據自己的實際情況和具體需求來選擇。比如:以全廠質量控制為主要目的,樣品種類多,需要做全分析,準確度要
X射線熒光分析儀的主要分類
根據分光方式的不同,X射線熒光分析可分為能量色散和波長色散兩類,也X射線熒光分析就是通常所說的能譜儀和波譜儀,縮寫為EDXRF和WDXRF。通過測定熒光X射線的能量實現對被測樣品的分析的方式稱之為能量色散X射線熒光分析,相應的儀器稱之為能譜儀,通過測定熒光X射線的波長實現對被測樣品分析的方式稱之為波
X射線熒光分析儀的發展歷程
1895年倫琴發現X射線; 1910年特征X射線光譜的發現,為X射線光譜學的建立奠定了基礎; 20世紀50年代商用X射線發射與熒光光譜儀的問世,使得X射線光譜學技術進入了實用階段; 60年代能量色散型X射線光譜儀的出現,促進了X射線光譜學儀器的迅速發展,并使現場和原位X射線光譜分析成為可能
X射線熒光光譜儀X射線吸收的介紹
當X射線穿過物質時,一方面受散射作用偏離原來的傳播方向,另一方面還會經受光電吸收。光電吸收效應會產生X射線熒光和俄歇吸收,散射則包含了彈性和非彈性散射作用過程。 當一單色X射線穿過均勻物體時,其初始強度將由I0衰減至出射強度Ix,X射線的衰減符合指數衰減定律: 式中,μ為質量衰減系數;ρ為樣
X射線熒光光譜儀X射線的衍射介紹
相干散射與干涉現象相互作用的結果可產生X射線的衍射。X射線衍射與晶格排列密切相關,可用于研究物質的結構。 其中一種用已知波長λ的X射線來照射晶體樣品,測量衍射線的角度與強度,從而推斷樣品的結構,這就是X射線衍射結構分析(XRD)。 另一種是讓樣品中發射出來的特征X射線照射晶面間距d已知的晶體
X射線熒光光譜儀X射線散射的介紹
除光電吸收外,入射光子還可與原子碰撞,在各個方向上發生散射。散射作用分為兩種,即相干散射和非相干散射。 相干散射:當X射線照射到樣品上時,X射線便與樣品中的原子相互作用,帶電的電子和原子核就跟隨著X射線電磁波的周期變化的電磁場而振動。因原子核的質量比電子大得多,原子核的振動可忽略不計,主要是原