化學所在有機共軛聚合物半導體研究方面取得系列進展
近年來,有機共軛聚合物由于具有優異的半導體性質,其研究受到廣泛關注。人們發現聚合物的側鏈不僅可以提高聚合物在有機溶劑中的溶解性,而且可以影響聚合物的半導體性能。 在中國科學院戰略性先導科技專項的支持下,中科院化學研究所有機固體院重點實驗室研究員張德清課題組科研人員在調控側鏈改變聚合物半導體性能的研究方面取得系列研究進展。他們在聚合物側鏈中引入脲基團,得到了側鏈含功能基團的共軛聚合物,如圖1所示。由于側鏈間的氫鍵相互作用,聚合物薄膜的有序性增強;與不含脲基團的聚合物相比,其場效應晶體管遷移率由3.4 cm2V-1s-1提升到13.1 cm2V-1s-1,體異質結太陽能電池光電轉換效率也由3.8%提升到6.8%。此研究結果為聚合物側鏈的研究提供了新的思路,最近發表在《美國化學會志》上 (J. Am. Chem. Soc. 2016, 138, 173)。 進一步研究發現,在共軛給-受體聚合物(DPPTTT)薄膜中引入四甲基銨......閱讀全文
新方法合成共軛聚合物用于腫瘤的光熱治療
光熱材料能夠利用陽光并將其轉化為熱能,從能源開發和環境保護的角度來看,開發光熱材料顯得格外有吸引力,其中碳基納米材料和共軛聚合物都是前景廣闊的光熱材料。同時,越來越多的證據表明,一些光熱材料輔以光熱療法可能會從脫落的腫瘤細胞殘留物中生成腫瘤結合劑,從而產生抗腫瘤的免疫效應,有力增強了光熱療法的癌
青島能源所在超寬帶隙共軛聚合物研究中取得進展
有機半導體材料主要應用于有機場效應晶體管(OFET)、本體異質節太陽能電池(BHJ-OPV)、有機電致發光材料(OLED)以及傳感器等,其結構便于設計、性能易于調控,以及可用于制備柔性電子器件等獨特優勢,吸引了科學界的廣泛關注,是未來國家材料以及能源發展的重要方向之一。含有內酰胺官能團的異靛藍分
基于共軛聚合物的疾病基因和蛋白檢測新技術
共軛聚合物熒光探針對HT29、HepG2、A498、HL60和M17腫瘤細胞p16、HPP1和GALR2三種基因啟動子的甲基化檢測分析結果 發展疾病的早期、高靈敏診斷技術對促進重大疾病防治具有重要意義。共軛聚合物具有強的光捕獲能力,可用來放大熒光傳感信號,為生物傳感器的
共軛聚合物的光學性能在生物領域的新應用
近年來,有機半導體因具有易功能化、高度生物相容性等優異性能而成為生物技術領域極具前景的材料。同時,有機半導體對可見光和近紅外光有很強的敏感性。利用共軛聚合物和有機分子作為外源性光敏驅動器,對細胞電生理活動進行光調制,也可用于人工視覺假體、光熱刺激或抑制細胞活性、調節動物行為等領域。但是很少考慮利
化學所在有機共軛聚合物半導體研究方面取得系列進展
近年來,有機共軛聚合物由于具有優異的半導體性質,其研究受到廣泛關注。人們發現聚合物的側鏈不僅可以提高聚合物在有機溶劑中的溶解性,而且可以影響聚合物的半導體性能。 在中國科學院戰略性先導科技專項的支持下,中科院化學研究所有機固體院重點實驗室研究員張德清課題組科研人員在調控側鏈改變聚合物半導體性能
化學所共軛聚合物光伏材料的分子設計取得進展
在D-A共軛聚合物的受體單元上引入氟取代基,由于可以在不影響聚合物吸收光譜和遷移率的前提下,有效降低聚合物的HOMO能級,進而提高器件的開路電壓和光伏性能,成為近幾年來的研究熱點;但是受限于受體單元在引入氟取代基時的選擇性,這種方法只能應用于少數的聚合物光伏材料體系,因而,如何有效地拓展其在聚合
共軛體系的共軛效應介紹
在單烯烴中碳碳雙鍵上的π電子的運動范圍,局限在兩個碳原子之間,稱為定域運動。在雙鍵單鍵雙鍵共軛的體系,如1,3-丁二烯分子中4個碳原子上的π電子的運動范圍,已不局限于兩個碳原子之間,而是在4個碳原子的分子軌道中運動,稱為離域現象。π電子的離域現象使得電子云的密度分布有所改變,內能降低,分子更趨于
Chem.-Mater.-|新型“糖橋”法實現熒光共軛聚合物靶向富集
銅綠假單胞桿菌(銅綠桿菌)在自然界中廣泛存在,已有研究表明其對人類的免疫系統產生影響,從而引起感染性疾病發生。目前銅綠桿菌已對多種抗生素產生耐藥性,因而發展新型抗菌方法尤為重要。抗菌材料作用于細菌時,需與細菌表面結合,而目前基于靜電吸引與疏水作用的結合方式具有結合力低、非特異性結合等缺點。因此亟
側鏈調控共軛聚合物半導體性能研究方面取得系列進展
近年來,有機共軛聚合物由于其優異的半導體性能,以及在多個領域的應用前景,受到廣泛關注。載流子遷移率是有機半導體性能的重要參數。國內外眾多課題組主要通過設計合成新的共軛分子和高分子來調節分子的電子結構和聚集態結構,進而提高載流子遷移率。近年來,研究結果表明共軛分子和高分子中的烷基側鏈的結構不僅可以
化學所在共軛聚合物設計與生物醫藥應用領域獲系列進展
共軛聚合物具有較強的光捕獲能力,可用來放大熒光傳感信號,在疾病診斷以及生物檢測等方面發揮了越來越重要的作用。近幾年來共軛聚合物在細胞與動物水平的熒光成像以及生物醫學領域的應用也獲得了高度關注。在國家自然科學基金委以及科技部的資助下,中國科學院化學研究所有機固體重點實驗室的科研人員在共軛聚合物設計
化學所提出兩維共軛聚合物光伏材料的分子設計策略
具有兩維共軛結構的苯并二噻吩類聚合物是由中國科學院化學研究所研究人員發展起來的一類高性能的聚合物光伏材料,這類材料具有寬吸收、高遷移率等突出優點,成為聚合物太陽能電池領域的研究熱點。近三年來,化學所高分子物理與化學重點實驗室的研究人員在兩維共軛聚合物光伏材料及其在聚合物太陽能電池方面的應用進行了
新型多功能共軛聚合物,提升鈣鈦礦太陽能電池性能
化石能源不具備可持續性,而且近代的大量使用帶來了一系列環境影響,一直是困擾世界各國的難題。太陽能電池作為很有希望的應對方案之一,是世界范圍內科學研究的焦點,低成本、可溶液加工、大面積、可彎曲的新一代太陽能電池,是很多科學家研究的目標。通過選用合適的空穴傳輸材料(HTMs)以及光伏給體材料,無機鈣
我國學者以TzBI共軛聚合物為原料研制高效太陽能電池
在國家自然科學基金項目(項目編號:91633301、21520102006、21822505)等資助下,我國學者在聚合物太陽能電池研究中取得重要進展。研究成果以“Fine-tuning of the Chemical Structure of Photoactive Materials for
化學所二維共軛聚合物光伏材料的分子設計研究獲系列進展
聚合物光伏材料的分子結構與其光伏性能具有十分密切的關系。根據目前報道的結果來看,對光伏聚合物的分子結構優化大多是針對某一個聚合物來進行的,也就是說,對于不同的分子結構,人們需要采用不同的方式對其進行優化。這不僅增大了分子結構優化工作的難度,也容易導致錯過很多具有潛力的分子結構單元。因此,找到一種
什么是共軛效應?
共軛效應 (conjugated effect) ,又稱離域效應,是指共軛體系中由于原子間的相互影響而使體系內的π電子(或p電子)分布發生變化的一種電子效應。凡共軛體系上的取代基能降低體系的π電子云密度,則這些基團有吸電子共軛效應,用-C表示,如-COOH,-CHO,-COR;凡共軛體系上的取代
什么是共軛效應?
在單烯烴中碳碳雙鍵上的π電子的運動范圍,局限在兩個碳原子之間,稱為定域運動。在雙鍵單鍵雙鍵共軛的體系,如1,3-丁二烯分子中4個碳原子上的π電子的運動范圍,已不局限于兩個碳原子之間,而是在4個碳原子的分子軌道中運動,稱為離域現象。π電子的離域現象使得電子云的密度分布有所改變,內能降低,分子更趨于穩定
共軛效應的影響
所謂共軛效應,是指在分子中形成離域的pai鍵,使電子能在整個空間運動,從而降低了能量,使結構更穩定。對于一個產生共軛結構的反應,由于產物能量更低,會使得這個方向反應的趨勢更大,另外就是對化學鍵性質的改變,例如在CH2=CH-CH=CH2中,四個碳是共軛結構,從而使得鍵長平均化,第二個C-C鍵變短,類
什么是共軛效應
共軛效應又稱離域效應,是指共軛體系中由于原子間的相互影響而使體系內的π電子 (或p電子)分布發生變化的一種電子效應稱為共軛效應。共軛體系能降低體系π電子云密度的基團有吸電子的共軛效應,能增高共軛體系π電子云密度的基團有給電子的共軛效應。單雙建交替出現的體系或雙鍵碳的相鄰原子上有p軌道的體系均為共軛體
關于共軛效應的介紹
“共軛效應是穩定的”是有機化學的最基本原理之一。但是,自30年代起,鍵長平均化,4N+2芳香性理論,苯環D6h構架的起因,分子的構象和共軛效應的因果關系,π-電子離域的結構效應等已經受到了廣泛的質疑。其中,最引人注目的是Vollhardt等合成了中心苯環具有環己三烯幾何特征的亞苯類化合物,Sta
什么是同共軛效應?
又稱p軌道與p軌道的σ型重疊。甲基以上的烷基,除有超共軛效應外,還可能產生同共軛效應。所有同共軛效應,原是指β碳原子上的C-H鍵與鄰近的π鍵間的相互作用。大量的化學活性和電子光譜的數據表明,在丙烯基離子和類似的烯羰基中,存在一種特殊的p-π或π-π共軛現象,即所謂同共軛效應: 在丙烯基離子中是
共軛二烯烴的應用
以丁二烯和異戊二烯為代表的碳四及碳五餾分用途越來越廣泛。丁二烯是C4餾分中最重要的組分之一,在石油化工烯烴原料中的地位僅次于乙烯和丙烯。C5餾分中最具有利用價值的是異戊二烯、間戊二烯、和環戊二烯三種共軛二烯烴,其中異戊二烯是主要產品之一。作為典型的共軛二烯烴,丁二烯和異戊二烯是合成橡膠的主要原料單體
共軛雙鍵的概念
共軛雙鍵體系即雙鍵和單鍵交替的分子結構產生共軛效應。共軛效應的特點是化學鍵的極化作用可以沿共軛體系傳遞得很遠。例如:共軛的結果是電子的離域,共軛體系內單鍵變短而雙鍵變長,單雙鍵長度差別縮小乃至消失。這樣的體系比較穩定。如苯分子中六個碳-碳都是1.39A,而普通的碳-碳雙鍵的鍵長為1.34A,碳-碳單
關于共軛亞油酸的簡介
共軛亞油酸(Conjugated linoleic acid,以下簡稱CLA)是亞油酸的所有立體和位置異構體混合物的總稱,可以看作是亞油酸的次生衍生物,分子式為C17H31COOH。共軛亞油酸的雙鍵可位于7和9,8和10,9和11,10和12,11和13,12和14位置上,其中每個雙鍵又有順式(
共軛堿單分子消除反應
反應物先與堿作用,失去β氫原子,生成反應物的共軛堿碳負離子,然后從這個碳負離子失去離去基團并生成π鍵。在生成π鍵的步驟中只有共軛堿碳負離子參加。?共軛堿單分子消除反應(E1CB)也分兩步進行,反應速率不僅與反應物濃度成正比,也與堿的濃度有關,其關系較復雜,在多數情況下也成正比。一般說來,只有β碳原子
共軛雙鍵的反應概念
含活潑雙鍵的化合物(親雙烯體)與含共軛雙鍵的化合物(雙烯體)之間發生1,4-加成生成六元環狀化合物的反應,稱為Diels-Alder反應,也稱雙烯合成?。反應過程(以1,3-丁二烯與乙烯間的反應為例)此反應為經環狀過渡態進行的周環反應,反應過程中舊鍵斷裂與新鍵形成協同進行。其反應機理以1,3-丁二烯
共軛體系的基本特點
在共軛體系中,雖然各原子間電子云密度不完全相同,但由于電子離域,使得單雙鍵的差別減小,鍵長有趨于平均化的傾向。共軛體系越長,單雙鍵差別越小。另外,由于電子離域作用,共軛體系能量降低,因而共軛體系比非共軛體系更加穩定。這可以從它們的氫化熱的數據得到證明。CH3CH=CHCH=CH2+2H2?——> C
共軛亞油酸的基本簡介
共軛亞油酸(Conjugated linoleic acid,以下簡稱CLA)是亞油酸的所有立體和位置異構體混合物的總稱,可以看作是亞油酸的次生衍生物,分子式為C17H31COOH。共軛亞油酸的雙鍵可位于7和9,8和10,9和11,10和12,11和13,12和14位置上,其中每個雙鍵又有順式(ci
簡述共軛體系的特點
在共軛體系中,雖然各原子間電子云密度不完全相同,但由于電子離域,使得單雙鍵的差別減小,鍵長有趨于平均化的傾向。共軛體系越長,單雙鍵差別越小。另外,由于電子離域作用,共軛體系能量降低,因而共軛體系比非共軛體系更加穩定。這可以從它們的氫化熱的數據得到證明。 CH3CH=CHCH=CH2+2H2 —
關于共軛雙鍵的概述
共軛雙鍵體系即雙鍵和單鍵交替的分子結構產生共軛效應。共軛效應的特點是化學鍵的極化作用可以沿共軛體系傳遞得很遠。例如:共軛的結果是電子的離域,共軛體系內單鍵變短而雙鍵變長,單雙鍵長度差別縮小乃至消失。這樣的體系比較穩定。如苯分子中六個碳-碳都是1.39A,而普通的碳-碳雙鍵的鍵長為1.34A,碳-
關于共軛雙鍵的簡介
在有機化合物分子結構中單鍵與雙鍵相間的情況稱為共軛雙鍵。有機化合物分子結構中由一個單鍵隔開的兩個雙鍵。以C=C-C=C表示。 含有共軛雙鍵的分子比含孤立雙鍵的分子較為穩定,能量較小,共軛雙鍵中單鍵與雙鍵的鍵長趨于平均化。