以丁二烯和異戊二烯為代表的碳四及碳五餾分用途越來越廣泛。丁二烯是C4餾分中最重要的組分之一,在石油化工烯烴原料中的地位僅次于乙烯和丙烯。C5餾分中最具有利用價值的是異戊二烯、間戊二烯、和環戊二烯三種共軛二烯烴,其中異戊二烯是主要產品之一。作為典型的共軛二烯烴,丁二烯和異戊二烯是合成橡膠的主要原料單體,通過聚合反應生成不同性能的橡膠,圖2列出了這兩種典型共軛二烯烴聚合反應的重要產物。......閱讀全文
以丁二烯和異戊二烯為代表的碳四及碳五餾分用途越來越廣泛。丁二烯是C4餾分中最重要的組分之一,在石油化工烯烴原料中的地位僅次于乙烯和丙烯。C5餾分中最具有利用價值的是異戊二烯、間戊二烯、和環戊二烯三種共軛二烯烴,其中異戊二烯是主要產品之一。作為典型的共軛二烯烴,丁二烯和異戊二烯是合成橡膠的主要原料單體
雙烯合成又稱狄爾斯-阿爾德(Diels-Alder反應)。共軛二烯烴和某些具有碳碳雙鍵、三鍵的不飽和化合物進行1,4一加成,生成環狀化合物的反應稱為雙烯合成反應。狄爾斯一阿爾德反應是協同反應,即舊鍵的斷裂和新鍵的形成是相互協調地在同一步驟中完成的。在光照或加熱的條件下,反應物分子彼此靠近,互相作用,
電環化反應電環化反應直鏈共軛多烯烴可發生分子內反應,π鍵斷裂,雙鍵兩端碳原子以σ鍵相連,形成一個環狀分子。電環化反應的顯著特點是高度的立體專一性,即在一定條件下(光或熱)生成特定構型的產物。電環化反應是周環反應的一種類型 ,所謂周環反應是指在化學反應過程中能形成環狀過渡態的一些協同反應, 它不受溶劑
聚合反應聚合反應通過聚合反應,生成相對分子質量高的聚合物。除和一般烯烴一樣發生加成反應外,特點是能起1,4-加成之類的反應,也容易聚合。如1,3-丁二烯(CH2=CH-CH=CH2)聚合生成-[-CH2-CH=CH-CH2-]n-
共軛二烯烴是含有兩個碳碳雙鍵,并且兩個雙鍵被一個單鍵隔開,即含有體系(共軛體系)的二烯烴。最簡單的共軛二烯烴是1,3-丁二烯。共軛二烯烴相對于累積二烯烴來說,更加穩定。
1.以烯丙基二硫縮醛為原料早在1988年,YangPingfan等人就報道了Ni催化的烯丙基二硫縮醛的偕二甲基化作用,該反應生成的是兩到三種的產物,文獻報道當R'的取代基從H到甲基到乙基,目標產物共軛二烯的產率呈上升趨勢???。2.以N-烯丙基腙的衍生物為原料2008年,Devon等人報道了
共軛二烯烴的物理性質和烷烴、烯烴相似。碳原子數較少的二烯烴為氣體,例如1,3-丁二烯為沸點-4℃的氣體;碳原子數較多的二烯烴為液體,如異戊二烯為沸點34℃的液體。它們都不溶于水而溶于有機溶劑。共軛二烯烴具有烯烴雙鍵的一些化學性質,但由于是共軛體系,在加成和聚合反應中,又具備一些特有的規律。共軛二烯烴
和1,2-加成和1,4-加成:極性試劑有利于1,4-加成;低溫有利于1,2-加成,高溫有利于1,4-加成。共軛二烯烴同普通烯烴一樣,容易與鹵素、鹵化氫等親電試劑發生加成反應;它的特點是比普通烯烴更容易發生加成反應,但由于中間體變化,生成多種加成產物.共軛二烯的部分加成產物,即1,2-和1,4-加成產
共價有機框架(Covalent Organic Frameworks, COFs)是一類由有機基元通過共價鍵連接而成的晶態有機多孔聚合物。其中,二維COFs通常是由剛性構筑單元連接形成的平面網絡結構通過層間π-π作用堆積構成。理論上,層間π-π電子云的重疊以及層內共軛連接使得載流子能夠在COF骨
共軛酸堿對在緩沖原理中的應用以HB—B—緩沖溶液體系為例,HB和?的起始濃度很大,體系中存在共軛酸HB和它的共軛堿。根據酸堿反應的原則,不難知道,如果向此溶液中加入少量強酸時,溶液中的共軛堿可以接受?,生成HB,從而抵抗?對pH的影響。如果向此溶液中加入少量強堿時,溶液中的共軛酸HB可以接受?,生成