<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • Antpedia LOGO WIKI資訊

    從富勒烯到石墨烯,怪異的中國式創新

    如果材料本身有意識,所有的材料一定都嫉妒石墨烯。這家伙紅得發紫,是當下材料領域最耀眼的明星。 細想下來,我在材料科學這個領域居然混了將近20年了。96年是國家863成果10周年成果展覽,想起當時的盛況,恍如昨日。 如果說那一年最耀眼的材料明星是誰,當之無愧的是富勒烯。 不知道是偶然還是必然,20年,人們對功能材料的最前沿的探索居然都集中在碳這個最常見的家伙身上。這2個家伙的境遇和經歷有著驚人的相似。都是單質碳的不同表現形式;都是諾獎的成果;都是集萬千寵愛與一身。不同的是,富勒烯的結構在自然界不存在,是人用高的能量制備出來的,成為碳在自然界的第三種存在形式;石墨烯的結構本來就有,只不過是將石墨的片層結構進一步分離到單層結構而已。 更加詭異的是,這2個東西居然都被人們寄予數不清的期望:儲能,超導,光電,信息存儲,從新能源到生物醫藥,其跨界之大簡直無出其右,似乎這個東西可以解決人類所有的問題。 富勒烯從問世以來,研究其合......閱讀全文

    老年恒星周圍首次發現石墨烯與巴基球

    示意圖:在行星狀星云中發現的石墨烯和富勒烯。在這樣一顆類似太陽恒星的周圍空間探測到這些分子暗示像石墨烯這類碳的同素異形體可能廣泛分布于宇宙空間。這是哈勃空間望遠鏡拍攝的大麥哲倫星系中的行星狀星云SMP48,它是這項研究中被觀察的目標之一。從這張照片上可以非常清楚地知道為什么它們會被稱

    世界首例具有原子精度的全碳電子器件面世

      記者15日從廈門大學獲悉,該校固體表面物理化學國家重點實驗室、能源與石墨烯創新平臺洪文晶教授、謝素原教授與英國蘭卡斯特大學柯林·蘭伯特院士團隊合作,在國際上首次制備了以單個富勒烯分子為核心單元、石墨烯為電極的全碳電子器件,并通過富勒烯分子的分子工程學實現了對該全碳器件電子學性質的調控,為突破硅基

    白春禮:化學構筑未來生活

      2011年正值國際純粹與應用化學聯合會的前身國際化學會聯盟(IACS)成立100周年,也適逢居里夫人獲得諾貝爾化學獎100周年。為了紀念化學的成就及其對人類文明的貢獻,2008年,聯合國大會將2011定為“國際化學年”。   化學為我們創造了豐富多彩的世界,我們的日常生活幾乎沒有

    壓縮玻璃碳的基礎研究取得重要進展

      碳具有石墨、金剛石、富勒烯、碳納米管、石墨烯等多種同素異形體,石墨在高壓下可直接轉變成超硬金剛石。對于這種高溫高壓截獲的亞穩相,其晶體結構與初始前驅體結構、壓力溫度條件以及加載或卸載方式密切相關,為探索新奇碳材料提供了機會。   亞穩材料制備技術與科學國家重點實驗室(燕山大學)田永君教授、趙智勝

    物理所提出一種新型拓撲Node-Line半金屬碳烯結構

      碳元素是自然界中最為廣泛分布和存在的元素之一。從簡單碳氫化合物中可以得到四種基本碳碳鍵構型:乙烷(H3C-CH3)碳碳單鍵、乙烯(H2C=CH2)碳碳雙鍵、乙炔(HC≡CH)碳碳三鍵以及苯基大π鍵結構。苯基大π鍵結合構成穩定的兩維石墨烯,烷基碳碳單鍵結合構成三維金剛石,炔基碳碳三鍵結合形成碳原子

    第二屆全國樣品制備學術報告會在貴陽舉辦(上)

      分析測試百科網訊 2015年8月16日,中國儀器儀表學會分析儀器分會樣品制備專業委員主辦的第二屆全國樣品制備學術報告會在貴陽舉行。本次大會與中國儀器儀表學會分析儀器分會2015學術年會同期舉辦,參會200余人。張玉奎院士擔任會議名譽主席,關亞風研究員擔任會

    賽默飛世爾科技“拉曼光譜在碳材料方面的應用”網絡講座

      6月2日下午,賽默飛世爾科技借分析測試百科網這一平臺成功舉辦了本月第一場網絡視頻講座——拉曼光譜在碳材料方面的應用。賽默飛世爾科技張衍亮博士為大家介紹了拉曼光譜如何表征碳納米材料諸如碳納米管與石墨烯的物理與化學結構,以及賽默飛世爾新型DXR激光拉曼光譜儀在碳納米材料領域的技術特點。   拉曼

    新形式的碳—汞黝礦結構 工業領域大展拳腳

     在沸石孔內形成的汞黝礦結構的籠狀結構。英國《獨立報》網站供圖北京8月15日,碳可謂自然界的“千面女郎”:珍貴的鉆石、平凡無奇的鉛筆以及地球上最堅固材料石墨烯中的石墨等。據英國《獨立報》網站14日報道,經過科學家數十年的努力,現在,碳又擁有了一副新面孔——汞黝礦結構(Schwarzite)

    中國科學家首次成功合成石墨炔 開辟碳材料研究新領域

    ▲大面積石墨炔薄膜▲宏量制備高純度石墨炔▲二維碳石墨炔的結構模型  石墨炔是一種新的碳同素異形體,其豐富的碳化學鍵,大的共軛體系、寬面間距、優良的化學穩定性和半導體性能一直吸引著科學家的關注。隨著富勒烯、碳管及石墨烯等碳材料陸續通過物理方法成功制備,如何制備石墨炔一直是科學研究的焦點。  

    我國首條噸級富勒烯生產線投產

      近日,由內蒙古碳谷科技有限公司創建的國內首條噸級富勒烯生產線在內蒙古呼和浩特市正式投產。據了解,富勒烯是1985年天文學家在研究宇宙星云構成時意外發現的。11年后,這3位來自美國和英國的科學家因發現富勒烯獲得諾貝爾獎。如今,富勒烯與碳納米管和石墨烯已成為碳納米材料家族的3大代表。  “最常見的富

    “石墨烯之父”仍然埋頭實驗室 發現驚人

      石墨烯發現者之一、英國曼徹斯特大學教授安德烈˙海姆不久前在2016中國國際石墨烯創新大會上,向公眾講述自己獲得2010年諾貝爾物理學獎之后,仍投入90%的時間在實驗室做基礎研究的情況。他演講所迸發的創新思維,令人耳目一新、腦洞大開。  開啟二維材料新世界  長期以來,人們對二維結構的晶體了解不多

    材料前沿丨石墨炔:從發現到應用

    編者按:《石墨炔:從發現到應用》為國內外第一部全方位、系統地介紹石墨炔從基礎科學研究到實際應用探索的前沿著作。由我國首次發現石墨炔的專家,中國科學院院士李玉良先生及其團隊核心專家李勇軍研究員共同撰寫。內容新穎、權威,科學性和可讀性強!合成、分離新的不同維數碳同素異形體是過去二三十年研究的焦點,科學家

    化學所成功合成新的碳同素異形體-石墨炔

      在國家自然科學基金委、科技部和中科院的資助下,中科院化學所有機固體院重點實驗室在石墨炔研究方面取得了重要突破。利用六炔基苯在銅片的催化作用下發生偶聯反應,成功地在銅片表面上通過化學方法合成了大面積碳的新的同素異形體-石墨炔(graphdiyne)薄膜。研究結果還證實石墨炔是由1,

    我國科學家成功合成新的碳同素異形體

    最近,中科院化學所有機固體院重點實驗室科研人員在國家自然科學基金委、科技部和中國科學院的資助下,在石墨炔研究方面取得了重要突破。研究人員利用六炔基苯在銅片的催化作用下發生偶聯反應,成功地在銅片表面上通過化學方法合成了大面積碳的新的同素異形體——石墨炔(graphdiyne)薄膜,研究結果發

    青島能源所等新型石墨炔儲能材料研究獲進展

      石墨炔,是繼富勒烯、碳納米管、石墨烯之后,一種新的全碳納米結構材料。它是由sp和sp2雜化形成的一種新型碳的同素異形體,是由1,3-二炔鍵將苯環共軛連接形成的具有二維平面網絡結構的全碳材料,具有豐富的碳化學鍵、大的共軛體系、寬面間距、優良的化學穩定性,被譽為是最穩定的一種人工合成的二炔碳的同素異

    科學家首次在太空中發現巴基球蹤跡

      據英國廣播公司(BBC)7月23日報道,加拿大科學家在茫茫太空中首次探查到了巴基球(buckyball)C60及C70的蹤跡。新發現發表在7月23日出版的《科學》雜志上。  自從25年前C60偶然在實驗室被發現后,科學家就認為,巴基球可能漂浮在宇宙中,但是,直到今天才真

    石墨炔能源存儲材料方面取得系列進展

      碳素材料與人類生活密切相關,而石墨炔類材料是繼富勒烯、碳納米管、石墨烯之后,一類全新的碳素材料。在結構上講,它是目前唯一一類通過化學法合成的,同時含有sp和sp2(分別表示兩種不同的原子軌道雜化方式)兩種雜化形式碳,并具有中國知識產權的二維平面全碳材料。從性能上看,石墨炔類材料具有大的共軛體系、

    5nm是物理極限 芯片發展將就此結束?(一)

    摩爾定律是指IC上可容納的晶體管數目,約每隔18個月便會增加一倍,性能也將提升一倍。然而事情的發展總歸會有一個權限,5nm則是硅芯片工藝的極限所在,事實上,隨著10nm、7nm芯片研發消息不斷報出,人們也開始擔心硅芯片極限的逐漸逼近,會不會意味著摩爾定律最終失效,進而導致半導體行業停滯不前。

    石墨烯:未來材料寵兒

    今年3月,浙江大學利用石墨烯等材料制成世界“最輕材料”。   想在一秒鐘內下載一部高清電影嗎?石墨烯調制器的問世或許能讓這個愿望得以實現。   美國華裔科學家張翔教授的研究團隊用石墨烯研制出一款調制器,這個只有頭發絲四百分之一細的光學調制器具備的高速信號傳輸能力,有望將互聯網傳輸速度提高一萬倍。

    高鴻鈞團隊利用STM實現石墨烯納米結構原子級的可控折疊

      探索新型低維碳納米材料及其新奇物性一直是當今科技領域的前沿科學問題之一。二維的石墨烯晶格結構被認為是其他眾多的碳納米結構的母體材料。例如,將石墨烯結構沿著某一方向卷曲可以形成一維的碳納米管,將具有五元環和七元環石墨烯結構彎曲成球型結構即可形成富勒烯。石墨烯在未來納米學器件的應用,需要構筑具有三維

    常溫常壓下存在三維金屬碳獲理論證實

      據物理學家組織網11月7日(北京時間)報道,一個國際研究小組從理論上證實,可能存在處于常溫常壓下并具有金屬特性的三維(3D)形式的碳。發表在本周美國《國家科學院院刊》網絡版上的這一研究成果將極大地推進碳科學的研究。   碳科學是科學家們非常關注的研究領域。碳不僅是形成生命的化學基礎,而且具有豐

    “內嵌富勒烯”材料為什么這么貴?一克一億英鎊

      近日,英國《每日電訊報》網站報道,牛津大學的碳材料設計公司在生產“內嵌富勒烯”材料。該公司以2.2萬英鎊賣出了第一批200微克的“內嵌富勒烯”材料,相當于每克價值1億英鎊。有媒體將之稱為世界最貴材料。  “內嵌富勒烯”材料為什么這么貴?  富勒烯是在石墨、鉆石之后被發現的單質碳的第三種同素異形體

    納米尺度富勒烯電子器件可自行制冷

      近日,美國伊利諾伊大學研究人員宣布,他們用原子力顯微鏡探針檢測了與富勒烯(石墨單原子層)接觸點的熱電效應,首次發現富勒烯晶體管在納米尺度具有自行制冷效應,能降低自身溫度。該研究成果發表在4月3日網絡版的《自然·納米技術》雜志上。   計算機芯片的速度和尺寸大小受制于散熱效果。電流通過設備材料由

    7月23日《科學》雜志精選

            一個無冰的北極也許不是大型的碳匯  北冰洋最近吸收了大量二氧化碳,這可能已經非常接近其作為一個碳匯的限度。這些發現是由Wei-Jun Cai及其同僚報告的,他們檢測了從橫跨北冰洋的Canada Ba

    美模擬發現三種穩定存在的碳結構

      ,美國紐約州立大學石溪分校的科學家通過模擬發現了3種可穩定存在的新型碳結構。這些材料的密度超過現有三維材料中密度最大的鉆石,具有獨特的電子和光學性能,如能成功合成,將成為材料學領域的一大突破。相關論文6月7日發表在《物理評論快報B》雜志網絡版上。   碳是地球上最常見的一種元素,但其原子的不同

    石墨炔碳原子雜化類型

    碳家族發展歷程  碳具有sp3、sp2和sp種雜化態,通過不同雜化態可以形成多種碳的同素異形體,如通過sp3雜化可以形成金剛石,通過sp3與sp2雜化則可以形成碳納米管、富勒烯和石墨烯等,如下圖所示。a金剛石 b石墨 c藍絲黛爾石 d、e、f足球烯g無定形碳 h碳納米管  1996年化學諾貝爾獎被授

    石墨炔摻雜提升鈣鈦礦電池性能研究獲進展

    作為繼富勒烯、碳納米管、石墨烯之后的一種新型全碳納米結構材料,石墨炔具有豐富碳化學鍵、大共軛體系及寬面間距等特性以及優良化學穩定性,被譽為“最穩定的一種人工合成二炔碳同素異形體”。石墨炔獨特的結構特性,使其與無機納米粒子、有機聚合物、染料分子等發生相互作用或鍵合,表現出獨特電子轉移增強特性,在信息技

    中國學者的“折紙藝術”竟然登上了Science主刊?

      近日,中國科學院高鴻鈞團隊傳出喜訊,他們實現了在石墨烯上高精度的結構制作,精度已經達到了原子的級別。  這樣的研究成果不僅顯示了研究團隊對于納米結構制作的高超技術,也再次將石墨烯這一納米器件制作平臺推到了科學研究的最前沿,對于可控制造特殊性質的納米器件,例如量子器件,有重要研究意義。  此項成果

    不可能的任務!化學家首次成功合成純碳環

      18個原子組成‘環碳’雖然難以捉摸,但卻可能是邁向分子級晶體管的重要一步。  在大多數化學家放棄嘗試很久之后,終于有研究團隊合成出了第一個由18個原子組成的環狀純碳分子。由原子力顯微鏡拍攝的碳-18分子的三維圖像。來源:IBM Research  化學家先合成了一個由碳和氧組成的三角形分子,然后

    師昌緒 徐堅:材料科學成為人類進步的強大“引擎”

    波音787型“夢想”客機   2009年度材料科技的進展   材料科技的進展成為人類進步的強大“引擎”。《今日材料》2007年在評價材料科學時,將國際半導體技術藍圖、掃描式探針顯微鏡、巨磁電阻效應、半導體激光器和發光二極管、美國國家納米技術計劃、碳纖維復合材料、鋰離子電池材料、碳納米管、軟刻

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频