<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>

  • 深圳先進院等在超分辨光學顯微成像方面取得進展

    近日,中國科學院深圳先進技術研究院研究員鄭煒與美國國立衛生研究院教授 Hari Shroff 合作,成功研發出新型雙光子激發的超分辨光學顯微成像系統,該系統同時具備超分辨光學顯微成像功能和大深度三維成像能力,使光學超分辨成像深度推進至破紀錄的 250 微米,相應研究成果 Adaptive optics improves multiphoton super-resolution imaging(《自適應光學提升超分辨顯微成像》)最近發表在《自然 -方法》(Nature Methods)上,鄭煒是該文的第一作者兼通訊作者。 “看得細”和“看得深”是光學顯微成像領域面臨的兩大挑戰,經過科研人員幾十年來的不懈努力,無論是在“看得細”還是“看得深”方面,都涌現了一批創新技術,取得了巨大成功,但是同時具備“看得細”和“看得深”這兩項功能的光學顯微成像技術卻并不多見。 在該項研究中,鄭煒等人把具備深層生物組織成像能力的雙光......閱讀全文

    前沿顯微成像技術專題——超分辨顯微成像(2)

    上一期我們為大家介紹了幾種主要的單分子定位超分辨顯微成像技術,還留下了一些問題,比如它的分辨率是由什么決定的?獲得的大量圖像數據如何進行重構?本期我們就來為大家解答這些問題。單分子定位超分辨顯微成像的分辨率單分子定位超分辨顯微成像的分辨率主要由兩個因素決定:定位精度和分子密度。定位精度是目標分子在橫

    前沿顯微成像技術專題——超分辨顯微成像(1)

    從16世紀末開始,科學家們就一直使用光學顯微鏡探索復雜的微觀生物世界。然而,傳統的光學顯微由于光學衍射極限的限制,橫向分辨率止步于 200 nm左右,軸向分辨率止步于500 nm,無法對更小的生物分子和結構進行觀察。突破光學衍射極限,一直是科學家們夢想和追求的目標。雖然隨著掃描電鏡、掃描隧道顯微鏡及

    顯微鏡成像因素

    由于客觀條件,任何光學系統都不能生成理論上理想的像,各種相差的存在影響了成像質量。下面分別簡要介紹各種相差。?1、色差?色差是透鏡成像的一個嚴重缺陷,發生在多色光為光源的情況下,單色光不產生色差。白光由紅 橙 黃 綠 青 藍 紫 七種組成,各種光的波長不同 ,所以在通過透鏡時的折射率也不同,這樣物方

    顯微鏡成像原理

    ??? 顯微鏡是由一個透鏡或幾個透鏡的組合構成的一種光學儀器,是人類進入原子時代的標志。主要用于放大微小物體成為人的肉眼所能看到的儀器。顯微鏡分光學顯微鏡和電子顯微鏡。顯微鏡成像原理:????? 顯微鏡主要由目鏡、物鏡、載物臺和反光鏡組成。目鏡和物鏡都是凸透鏡,焦距不同。物鏡的凸透鏡焦距小于目鏡的凸

    顯微鏡成像原理

    其實普通的光學顯微鏡是根據凸透鏡的成像原理,要經過凸透鏡的兩次成像.第一次先經過物鏡(凸透鏡1)成像,這時候的物體應該在物鏡(凸透鏡1)的一倍焦距和兩倍焦距之間,根據物理學的原理,成的應該是放大的倒立的實像.而后以第一次成的物像作為“物體”,經過目鏡的第二次成像.由于我們觀察的時候是在目鏡的另外一側

    多光子顯微鏡成像技術:雙光子顯微鏡角膜成像

    角膜提供了眼睛的大部分折射能力,由5層組成(圖1),從外到內依次是上皮層,鮑曼層、基質、角膜后彈力層(間質膜)、內皮層。 wx_article_20200815180121_819doe.jpg 圖1 角膜的組織學結構 上皮層負責阻擋異物落入角膜,厚約50μm,由三

    多光子顯微鏡成像技術:雙光子顯微鏡角膜成像

    角膜提供了眼睛的大部分折射能力,由5層組成(圖1),從外到內依次是上皮層,鮑曼層、基質、角膜后彈力層(間質膜)、內皮層。圖1 角膜的組織學結構上皮層負責阻擋異物落入角膜,厚約50μm,由三種細胞構成,從外到內依次是表層細胞、翼細胞和基底細胞。只有基底細胞可進行有絲分裂和分化,基底細胞的補充是由從角膜

    活細胞成像顯微鏡

      活細胞成像顯微鏡是一種用于生物學領域的分析儀器,于2012年3月15日啟用。  技術指標  固態光源SSI(含7條激發譜線),高精度電動載物臺(X、Y:20nm,Z:5nm),CalSnapHQ2 CCD.EMCCD.濕控及CO2系統裝置,自動對焦裝置(焦距時間100ms,精度25nm)。10×

    顯微鏡的成像原理

    光學顯微鏡光學顯微鏡的原理光學顯微鏡主要由目鏡、物鏡、載物臺和反光鏡組成。目鏡和物鏡都是凸透鏡,焦距不同。物鏡的凸透鏡焦距小于目鏡的凸透鏡的焦距。物鏡相當于投影儀的鏡頭,物體通過物鏡成倒立、放大的實像。目鏡相當于普通的放大鏡,該實像又通過目鏡成正立、放大的虛像。經顯微鏡到人眼的物體都成倒立放大的虛像

    顯微鏡的成像原理

    顯微鏡是利用凸透鏡的放大成像原理,將人眼不能分辨的微小物體放大到人眼能分辨的尺寸,其主要是增大近處微小物體對眼睛的張角(視角大的物體在視網膜上成像大),用角放大率M表示它們的放大本領。因同一件物體對眼睛的張角與物體離眼睛的距離有關,所以一般規定像離眼睛距離為25厘米(明視距離)處的放大率為儀器的放大

    徠卡顯微鏡成像系統

    徠卡生物顯微鏡物鏡是zui重要的成像透鏡,常被認為是電鏡的心臟。物鏡的像差也是各級成像透鏡中影響zui大考.所以對物鏡的要求是盡量減小像差,尤其是球差、色差、衍射差和像散。因為它們決定了電鏡的分辨宰。研究表明,球差系數e和色差系數q近似等于透鏡的焦距/*因此為提高分辨率,應該減小物鏡的焦距;為了實現

    顯微鏡的成像原理

    顯微鏡是利用凸透鏡的放大成像原理,將人眼不能分辨的微小物體放大到人眼能分辨的尺寸,其主要是增大近處微小物體對眼睛的張角(視角大的物體在視網膜上成像大),用角放大率M表示它們的放大本領。因同一件物體對眼睛的張角與物體離眼睛的距離有關,所以一般規定像離眼睛距離為25厘米(明視距離)處的放大率為儀器的放大

    光學顯微鏡成像原理

    學生用的顯微鏡是反像,上下左右與實際物體正好相反。物鏡放大率乘以目鏡放大率就是總放大倍數。

    顯微熒光成像相機選購必備

    眾所周知,顯微熒光成像是一種相對特殊的成像研究,如果說一般的顯微成像拍攝還可以用普通的相機,那熒光成像確是一定要用專業的冷CCD相機才可以的。鑒于熒光成像光源一般較弱,要想的到良好的顯微圖片,還真不是一件容易的事。對于需要用到顯微熒光成像的用戶,建議是一定要買一款制冷的CCD相機,相對于不制冷的CC

    顯微鏡的成像過程

    倒置與正置顯微鏡的區別1.顯微鏡的成像過程:光源(傳統顯微鏡為自然光源,現多為人工光源)通過反光鏡再到光圈投射到被檢物上,北京物反射光源后光學穿過物鏡,經過折射在鏡頭內形成物體放大的實像,再通過目鏡把通過物鏡的像進一步放大zui終進入人眼觀察。2.顯微鏡放大倍率的計算:顯微鏡實際放大倍數為物鏡的放大

    金相顯微鏡成像原理

      當把待觀察物體放在物鏡焦點外側靠近焦點處時,在物鏡后所成的實像恰在目鏡焦點內側靠近焦點處,經目鏡再次放大成一虛像。觀察到的是經兩次放大后的倒立虛像。

    光學顯微鏡成像原理

    ??顯微鏡是由一個透鏡或幾個透鏡的組合構成的一種光學儀器,是人類進入原子時代的標志。主要用于放大微小物體成為人的肉眼所能看到的儀器。光學顯微鏡成像原理:???????光學顯微鏡主要由目鏡、物鏡、載物臺和反光鏡組成。目鏡和物鏡都是凸透鏡,焦距不同。物鏡的凸透鏡焦距小于目鏡的凸透鏡的焦距。物鏡相當于投影

    顯微鏡的成像原理

    光學顯微鏡光學顯微鏡的原理光學顯微鏡主要由目鏡、物鏡、載物臺和反光鏡組成。目鏡和物鏡都是凸透鏡,焦距不同。物鏡的凸透鏡焦距小于目鏡的凸透鏡的焦距。物鏡相當于投影儀的鏡頭,物體通過物鏡成倒立、放大的實像。目鏡相當于普通的放大鏡,該實像又通過目鏡成正立、放大的虛像。經顯微鏡到人眼的物體都成倒立放大的虛像

    影響顯微成像質量的因素顯微鏡鏡頭

    顯微鏡鏡頭分不同類型,但即使對于同一類型的鏡頭,其成像質量也有著很大的差異,這主要是由于材質、加工精度和鏡片結構的不同等因素造成的,同時也導致不同檔次的鏡頭價格從幾百元到幾萬元的巨大差異。比較著名的如四片三組式天塞鏡頭、六片四組式雙高斯鏡頭。對于鏡頭設計及生產廠家,一般用光學傳遞函數OTF(Opti

    顯微鏡質量的核心成像

    顯微鏡質量的核心就是其光學部分,也就是目鏡和物鏡部分。對于物鏡來說,一般可以分為幾個級別。首先是消色差物鏡,使用這種物鏡,不是成像所有的地方都清晰,只有視野中央60%左右的范圍清晰,外周40%部分會存在一定的缺陷。通常我們會把觀察部分放在視野中央,所以并不影響觀察。但是如果你想要100%視野沒有缺陷

    原子力顯微鏡成像模式

      原子力顯微鏡的主要工作模式有靜態模式和動態模式兩種。在靜態模式中,懸臂從樣品表面劃過,從懸臂的偏轉可以直接得知表面的高度圖。在動態模式中,懸臂在其基頻或諧波或附近振動,而其振幅、相位和共振與探針和樣品間的作用力相關,這些參數相對外部參考的振動的改變可得出樣品的性質。  接觸模式  在靜態模式中,

    徠卡生物顯微鏡——成像系統

    徠卡生物顯微鏡成像系統依次由物鏡、中間鏡和投影鏡等組成,zui接近樣品的是物鏡,zui接近熒光屏的是投影鏡。中間鏡的數目可以有二個或三個不等。電鏡的總放大倍數由各級成保透鏡的放大倍數之積決定。?徠卡生物顯微鏡—物鏡單元?徠卡生物顯微鏡物鏡是zui重要的成像透鏡,常被認為是電鏡的心臟。物鏡的像差也是各

    如何使顯微鏡成像更好

    ?1.使用顯微鏡時,被檢物體做的較標準很重要。如:切片厚度是否太厚,蓋玻片是否符合國標等。????2.顯微鏡物鏡按檔次可分為約6-8個檔,zui常用的為平場消色差物鏡。如鏡頭檔次太低,則成像質量會下降。因此,建議選擇平場以上檔次物鏡。????3.聚光鏡孔徑光欄,盡量和物鏡的數值孔徑相符。才能得到zu

    相稱顯微鏡相差成像簡介

      人的眼睛能夠識別明與暗之差(光的強度)和顏色不同(光的波長不同),但難以識別差別小的無色的透明物體。  光對無色透明物體(相位物體)并不引起明、暗和顏色的變化,而只產生所謂的相位差。可是這種相位差不能用肉眼識別,也就看不見這種相位物體了。  相差顯微鏡利用阿貝成像原理,把相位變化轉化為振幅變化,

    顯微鏡為什么倒置成像

    物鏡成倒立放大的實像,人眼通過目鏡看這個倒立的像,所以是倒的。目鏡相當于放大鏡,成正立放大的虛像。一般顯微鏡中沒有加正像系統。

    原子力顯微鏡成像模式

    ? ? 原子力顯微鏡是顯微鏡中的一種類型,應用范圍十分廣泛。是一種可用來研究包括絕緣體在內的固體材料表面結構的分析儀器。原子力顯微鏡三種成像模式  當原子力顯微鏡成像模式的針尖與樣品表面原子相互作用時,通常有幾種力同時作用于微懸臂,其中最主要的是范德瓦爾斯力。當針尖與樣品表面原子相互靠近時,它們先互

    光學顯微鏡的成像原理

    光學顯微鏡的成像研究和設計,是以人眼可見光光線(人們常說的:可見光)的物理現象為基礎進行的。光學顯微鏡的分辨力受可見光波長的限制,質量較好的光學顯微鏡的分辨極限約為0.2μm。小于光波波長的物體因衍射而不能成像。為了觀察到更細微的物體和結構,科學家采用更短波長的電子射線來代替光波,設計出了電子顯微鏡

    光學顯微鏡的成像原理

    光學顯微鏡的原理光學顯微鏡主要由目鏡、物鏡、載物臺和反光鏡組成。目鏡和物鏡都是凸透鏡,焦距不同。物鏡的凸透鏡焦距小于目鏡的凸透鏡的焦距。物鏡相當于投影儀的鏡頭,物體通過物鏡成倒立、放大的實像。目鏡相當于普通的放大鏡,該實像又通過目鏡成正立、放大的虛像。經顯微鏡到人眼的物體都成倒立放大的虛像。反光鏡用

    太赫茲近場掃描顯微成像技術

    太赫茲(Terahertz, THz)輻射通常是指頻率范圍處于0.1—10THz的電磁輻射,其波段位于電磁波譜中的微波和紅外之間。近年來,太赫茲技術得到了迅猛發展和廣泛應用,成為前沿交叉學科領域之一。太赫茲波由于光子能量很低、具有非破壞性和非等離特性,使得太赫茲在材料檢測和無損探測方面有著廣泛應

    結構光照明顯微成像(SIM)

    克服光學衍射極限,觀察到亞細胞尺度的生物結構和變化過程一直是生命科學研究的目標之一,也是超分辨顯微鏡誕生的目的所在。隨著現代顯微成像技術的發展和不斷突破,超分辨顯微成像大家庭也一直在補充新鮮血液。不過,這些形形色色的技術各自也都存在著不足:譬如前面幾期中我們提到的 PALM/ STORM/DNA-P

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频