分子雜交儀其基本原理就是應用核酸分子的變性和復性的性質,使來源不同的 DNA(或RNA)片段,按堿基互補關系形成雜交雙鏈分子(heteroduplex)。雜交雙鏈可以在DNA與DNA鏈之間,也可在RNA與DNA鏈之間形成。 核酸分子雜交是基因診斷的最基本的方法之一。它的基本原理是:互補的DNA單鏈能夠在一定條件下結合成雙鏈,即能夠進行雜交。這種結合是特異的,即嚴格按照堿基互補的原則進行,它不僅能在DNA和DNA之間進行,也能在DNA和RNA之間進行。因此,當用一段已知基因的核酸序列作出探針,與變性后的單鏈基因組DNA接觸時,如果兩者的堿基完全配對,它們即互補地結合成雙鏈,從而表明被測基因組DNA中含有已知的基因序列。由此可見,進行基因檢測有兩個必要條件,一是必需的特異的DNA探針;二是必需的基因組DNA。當兩者都變性呈單鏈狀態時,就能進行分子雜交。[1]......閱讀全文
這是最早用于性病診斷的重組DNA技術。基本原理是具有一定同源性的兩條核酸單鏈在一定條件下(適宜的溫度及離子強度等)可按堿基互補原則形成雙鏈,此雜交過程是高度特異的。雜交的雙方是待測核酸及探針。待測核酸序列為性病病原體基因組或質粒DNA。探針以放射核素或非放射性核素標記,以利于雜交信號的檢測。 所謂
一、核酸分子雜交技術1961年Hall開拓了液相核酸雜交技術的研究,其基本原理是利用核酸分子單鏈之間有互補的堿基順序,通過堿基對之間非共價鍵的形成,出現穩定的雙鏈區,形成雜交的雙鏈。自此以后,由于分子生物學技術的迅猛發展,特別是70年代末到80年代初,分子克隆、質粒和噬菌體DNA的構建成功,核酸自動
一、核酸分子雜交技術1961年Hall開拓了液相核酸雜交技術的研究,其基本原理是利用核酸分子單鏈之間有互補的堿基順序,通過堿基對之間非共價鍵的形成,出現穩定的雙鏈區,形成雜交的雙鏈。自此以后,由于分子生物學技術的迅猛發展,特別是70年代末到80年代初,分子克隆、質粒和噬菌體DNA的構建成功,核酸自動
一、核酸分子雜交技術1961年Hall開拓了液相核酸雜交技術的研究,其基本原理是利用核酸分子單鏈之間有互補的堿基順序,通過堿基對之間非共價鍵的形成,出現穩定的雙鏈區,形成雜交的雙鏈。自此以后,由于分子生物學技術的迅猛發展,特別是70年代末到80年代初,分子克隆、質粒和噬菌體DNA的構建成功,核酸自動
第一節 原位雜交組織化學概述 一、核酸分子雜交技術 1961年Hall開拓了液相核酸雜交技術的研究,其基本原理是利用核酸分子單鏈之間有互補的堿基順序,通過堿基對之間非共價鍵的形成,出現穩定的雙鏈區,形成雜交的雙鏈。自此以后,由于分子生物學技術的迅猛發展,特別是70年代末到80年代初,分子克隆、質
6、基本實驗過程 用于大分子合成過程研究的放射自顯影技術: 同位素標記示蹤化合物→注入動物體內→ 取下器官或組織→切片→ 涂乳膠膜→自顯影→顯影和定影→染色→觀察 用于大分子定位研究的放射自顯影技術: 組織固定包埋→切片 ↓ 細胞化學反
分子雜交儀(又名:分子雜交箱、分子雜交爐)是現代實驗室采用雜交技術的理想設備,可替代塑料雜交袋和水浴搖床,并避免雜交袋破損帶來污染危險。雜交爐采用微機控溫精確,爐內空氣循環裝置設計獨特,升溫速度快等特點。廣泛地使用于克隆基因的篩選、酶切圖譜的制作、基因組中特定基因序列的定性、定量檢測和疾
分子雜交儀(又名:分子雜交箱、分子雜交爐)是現代實驗室采用雜交技術的理想設備,可替代塑料雜交袋和水浴搖床,并避免雜交袋破損帶來污染危險。雜交爐采用微機控溫精確,爐內空氣循環裝置設計獨特,升溫速度快等特點。廣泛地使用于克隆基因的篩選、酶切圖譜的制作、基因組中特定基因序列的定性、定量檢測和疾病的診斷等方
分子雜交儀(又名:分子雜交箱、分子雜交爐)廣泛地使用于克隆基因的篩選、酶切圖譜的制作、基因組中特定基因序列的定性、定量檢測和疾病的診斷等方面。因而它不僅在分子生物學領域中具有廣泛地應用,而且在臨床診斷上的應用也日趨增多。原理分子雜交儀其基本原理就是應用核酸分子的變性和復性的性質,使來源不
分子雜交儀(又名:分子雜交箱、分子雜交爐)廣泛地使用于克隆基因的篩選、酶切圖譜的制作、基因組中特定基因序列的定性、定量檢測和疾病的診斷等方面。因而它不僅在分子生物學領域中具有廣泛地應用,而且在臨床診斷上的應用也日趨增多。原理分子雜交儀其基本原理就是應用核酸分子的變性和復性的性質,使來源不同的DNA(
DNA的變性 DNA的復性 核酸分子雜交 變性(denaturation)和復性(renaturation) 是雙鏈核酸分子的二個重要物理特性。也是核酸研究中經常引用的術語。雙鏈DNA,RNA雙鏈區,DNA: RNA雜種雙鏈(hybrid duplex)以及其它異源
HL-2000分子雜交箱常規運用:分子生物學,原為雜交,SOUTHERN,NORTHERN雜交,斑馬魚雜交,水稻雜交等HL-2000分子雜交爐用途:依據核酸分子雜交技術原理設計,采用微機控制。既可進行固相雜交或液相雜交,又可進行基因芯片雜交實驗;亦能作酶聯反應孵育器。HL-2000分子雜交爐原理:通
目前已有許多新生物學技術應用于免疫學研究,促進了免疫學的發展,豐富了免疫學檢測的內容,使免疫學研究與相關疾病的診斷建立在基因水平,提高了檢測的敏感性和可靠性。 一、分子雜交技術 分子雜交的基本原理是根據雙鏈DNA經高溫解鏈成兩條互補的單鏈,降溫后又可恢復原來的雙鏈。兩條不同的單鏈分子可根據堿基配
(二)目的克隆的鑒定經過初步篩選獲得的陽性克隆,下一步必須對帶有目的序列的克隆做進一步篩選和鑒定。鑒定一般有幾種常用方法:(1)分子雜交;(2)免疫學檢測;(3)DNA測序;(4)蛋白質活性篩選;(5)基因互補實驗。1. 分子雜交核酸分子雜交有多種方法:原位雜交、點雜交及Southern雜交等。原理
分子雜交技術 互補的核苷酸序列通過Walson-Crick 堿基配對形成穩定的雜合雙鏈分子DNA 分子的過程稱為雜交。雜交過程是高度特異性的,可以根據所使用的探針已知序列進行特異性的靶序列檢測。雜交的雙方是所使用探針和要檢測的核酸。該檢測對象可以是克隆化的基因組DNA,也可以是細胞總DN
一.基本原理核酸分子雜交技術是目前分子生生物學、細胞生物學和生物化學研究中應用最廣泛的技術之一,是定性、定量和定位檢測兩條來源不同的聚核苷酸鏈上堿基順序同源性的一種手段。DNA分子是高度有序的雙鍵分子。一條鏈的堿基與另一條鏈的堿基以氫鍵配對相連.形成腺嘌呤與胸腺嘧啶(A.T),鳥嘌呤與胞嘧啶(G.C
實驗概要本文介紹了細胞組分分析方法的原理及操作流程等。實驗原理核酸分子雜交技術是目前分子生生物學、細胞生物學和生物化學研究中應用最廣泛的技術之一,是定性、定量和定位檢測兩條來源不同的聚核苷酸鏈上堿基順序同源性的一種手段。DNA分子是高度有序的雙鍵分子。一條鏈的堿基與另一條鏈的堿基以氫鍵配對相連.形成
醫生需要綜合患者的病史,癥狀,及各種檢查的結果作出臨床診斷。隨著人們對疾病的病因及發病機理的認識的不斷深入,臨床檢查的手段也在不斷進步。目前看來,絕大多數疾病的發生,發展都與患者遺傳背景或者其改變有關,所以臨床上越來越有必要檢查這種變化。這種用分子生物學方法檢測患者體內遺傳物質的水平或
一、酸雜交技術檢驗方法建立的基本要素是特異性和靈敏度,在復雜的物體中,使無法感覺的特定物質進入人類的觀察范圍。核酸雜交檢測技術就是利用核酸堿基嚴格配對的特異性,核酸標記物的靈敏度而建立的檢測核酸結構與功能的方法。該法建立以來已有二十年,目前研究實驗室用得多,臨床實驗室用得較少,除成本高外,關鍵是操作
五、核酸分子雜交的類型 隨著基因工程研究技術的迅猛發展,新的核酸分子雜交類型和方法在不斷涌現和完善。核酸分子雜交可按作用環境大致分為固相雜交和液相雜交兩種類型。固相雜交是將參加反應的一條核酸鏈先固定在固體支持物上,一條反應核酸游離在溶液中。固體支持物有硝酸纖維素濾膜、尼龍膜、乳膠顆粒、磁珠和微孔板
五、核酸分子雜交的類型 隨著基因工程研究技術的迅猛發展,新的核酸分子雜交類型和方法在不斷涌現和完善。核酸分子雜交可按作用環境大致分為固相雜交和液相雜交兩種類型。固相雜交是將參加反應的一條核酸鏈先固定在固體支持物上,一條反應核酸游離在溶液中。固體支持物有硝酸纖維素濾膜、尼龍膜、乳膠顆粒、磁珠和微孔板
主要內容:一、分子雜交的概念 二、分子雜交基本原理 (一)DNA變性: 1、DNA變性的方法2、增色效應3、溶解曲線4、融解溫度5、影響Tm值的因素。 (二)復性:退火一、分子雜交的概念: 分子雜交(molecular hybridization)指
一、基于分子雜交的分子診斷技術 上世紀60年代至80年代是分子雜交技術發展最為迅猛的20年,由于當時尚無法對樣本中靶基因進行人為擴增,人們只能通過已知基因序列的探針對靶序列進行捕獲檢測。其中液相和固相雜交基礎理論、探針固定包被技術與cDNA探針人工合成的出現,為基于分子雜交的體外診斷方法進行了
是用標記的核酸探針,使用非放射檢測系統或放射自顯影系統,在組織切片、細胞涂片及染色體制片上等對核酸進行定性、定位和相對定量研究的一種分子生物學方法,具有靈敏、特異、直觀等優點。已逐漸成為分子生物學和分子病理學的常見技術之一,廣泛應用于腫瘤生物學、血液病理學、遺傳、微生物學、細胞和分子生物學、神經內分
分子診斷技術是指以DNA和RNA為診斷材料,用分子生物學技術通過檢測基因的存在、缺陷或表達異常,從而對人體狀態和疾病作出診斷的技術。其基本原理是檢測DNA或RNA的結構是否變化、量的多少及表達功能是否異常,以確定受檢者有無基因水平的異常變化,對疾病的預防、預測、診斷、治療和預后具有重要意義。通俗
DNA 芯片的制備與應用DNA 芯片的出現,是生物技術領域的一次革命,雖然現在無法預知它帶給我們的變化。但由于它在人類基因組計劃,基因表達和藥物篩選等方面的潛在用途。目前已有越來越多的公司和研究機構加入到DNA芯片的設計與開發。DNA芯片技術集成了集成電路制造,照相平板印刷,DNA合成,探針的熒光標
LF系列分子雜交儀是依據核酸分子雜交儀技術原理,采用智能型數字溫度控制器,可作分子雜交,也可作酶聯反應的孵育器。與酶免結合可建立全定量或半定量PCR檢測方法。在病毒、細菌疾病的基因診斷的臨床檢測中具有良好的應用效果。分子雜交儀特 點:儀器結構采用模塊化設計,外觀新穎、溫度控制穩定、操作簡
摘要:基因芯片技術是90年代中期以來快速發展起來的分子生物學高新技術,是各學科交叉綜合的嶄新科學。其原理是采用光導原位合成或顯微印刷等方法,將大量DNA探針片段有序地固化予支持物的表面,然后與已標記的生物樣品中DNA分子雜交,再對雜交信號進行檢測分析,就可得出該樣品的遺傳信息。基因芯片技術目前國
夾心雜交法可用濾膜和小珠固定吸附探針,使用小珠可更好地進行標準化試驗和更容易對小量樣品進行操作。Dahlen 等利用微孔板進行夾心雜交,可同時進行大量樣品檢測,他們先吸取DNA探針加到凹板中,然后用紫外線照射使其固定到塑料板上。用微孔板進行夾心雜交還可直接用于PCR技術。應用光敏生物標記探針
分子診斷技術盤點分子診斷技術是指以DNA和RNA為診斷材料,用分子生物學技術通過檢測基因的存在、缺陷或表達異常,從而對人體狀態和疾病作出診斷的技術。分子診斷技術為疾病的預測、診斷、預防、治療和轉歸提供了信息和決策依據,已廣泛應用于傳染病的診斷、流行病的調查、食品衛生檢查、腫瘤和遺傳病的早期診斷及法醫