激發光譜與發射光譜的關系
a.Stokes位移 激發光譜與發射光譜之間的波長差值。發射光譜的波長比激發光譜的長,振動弛豫消耗了能量。b.發射光譜的形狀與激發波長無關 電子躍遷到不同激發態能級,吸收不同波長的能量,產生不同吸收帶,但均回到第一激發單重態的最低振動能級再躍遷回到基態,產生波長一定的熒光。 c. 鏡像規則 通常熒光發射光譜與它的吸收光譜(與激發光譜形狀一樣)成鏡像對稱關系。......閱讀全文
分子熒光和分子磷光
分子和原子一樣,也有它的特征分子能級,分子內部的運動可分為價電子運動、分子內原子在平衡位置附近的振動和分子繞其重心的轉動。因此分子具有電子能級、振動能級和轉動能級。 分子從外界吸收能量后,就能引起分子能級的躍遷,即從基態躍遷到激發態,分子吸收能量同樣具有量子化的特征,即分子只能吸收等于二個能級
分子熒光壽命
熒光壽命(lifetime):去掉激發光后,分子的熒光強度降到激發時最大熒光強度的1/e(備注:e為自然對數的底數,其值約為2.718)所需要的時間,稱為熒光壽命.熒光分子處于S1激發態的平均壽命,可用下式表示:τ f = 1 /(kf + ΣK)(典型的熒光壽命在10-8~10-10s) ?kf表
分子熒光鏡像規則
? 基態上的各振動能級分布與第一激發態上的各振動能級分布類似;基態上的零振動能級與第一激發態的二振動能級之間的躍遷幾率最大,相反躍遷也然。
分子熒光躍遷類型
分子熒光 躍遷類型
單分子熒光檢測
單分子檢測被稱為分析化學的極限,近年來取得了重要進展。其中,單分子熒光分析是實現單分子檢測最靈敏的光分析技術。單分子熒光檢測的關鍵在于確保被照射的體積中只有一個分子與激光發生作用以及消除雜質熒光的背景干擾。通常采用高效濾光片,利用共焦、近場合消失波激發,可以達到此目的。單分子熒光檢測可提供單分子水平
單分子熒光染料——ATTO熒光染料
單分子熒光檢測技術是近十年來迅速發展起來的一種超靈敏的檢測技術,其檢測尺度可以精確到納米量級,是單分子檢測的首選方法。該檢測技術利用熒光標記來顯示和追蹤單個分子的構象變化、動力學、單分子之間的相互作用以及進行單分子操縱。而熒光染料作為重要的標記物在單分子檢測中起到了舉足輕重的作用。熒光染料,指吸收某
單分子熒光染料——ATTO熒光染料
單分子熒光檢測技術是近十年來迅速發展起來的一種超靈敏的檢測技術,其檢測尺度可以精確到納米量級,是單分子檢測的首選方法。該檢測技術利用熒光標記來顯示和追蹤單個分子的構象變化、動力學、單分子之間的相互作用以及進行單分子操縱。而熒光染料作為重要的標記物在單分子檢測中起到了舉足輕重的作用。熒光染料,指吸收某
分子熒光和原子熒光的區別
分子熒光和原子熒光都是光致發光,二者都是價電子躍遷,但因為前者會伴隨有振動能級和轉動能級的躍遷,所以是連續發射,而后者是分立的線發射;前者分析物一般是處于溶液狀態,后者需要轉化成氣態原子;前者測定的主要是含有共軛不飽和體系的化合物,而后者測定的主要是金屬元素的含量;前者采用的主要是氙燈或高壓汞燈,而
分子熒光取代基影響
1)給電子取代基加強熒光2)得電子取代基減弱熒光、加強磷光
分子熒光剛性平面結構
???? 有剛性結構的分子容易發熒光,熒光物質的剛性和平面性增加,有利于熒光發射。
熒光分光光度計(分子熒光)
1、基本原理 在室溫下分子大都處在基態的最低振動能級,當受到光的照射時,便吸收與它的特征頻率相一致的光線,其中某些電子由原來的基態能級躍遷到第一電子激發態或更高電子激發態中的各個不同振動能級,這就是在分光光度法中所述的吸光現象。躍遷到較高能級的分子,很快通過振動弛豫、內轉換等方式釋放能量后下
分子熒光法測定蒽
分子熒光法測定蒽一、?實驗目的1.?掌握熒光光度分析法的基本原理和方法以及熒光激發光譜和發射光譜的關系;2.?掌握熒光光譜儀的基本組成及使用方法;3.?掌握熒光光譜定量分析的基本方法。二、?實驗原理處于基態的熒光物質分子吸收與其對應的特征電子能級相一致的光能后,將躍遷到能量較高的電子激發態。處于較高
單分子熒光檢測的介紹
單分子檢測是近十年來迅速發展起來的一種超靈敏的檢測技術,為分析化學工作者打開了一扇新的大門。單分子檢測(SMD)及其分析是一個考察細胞系統內動力學變化以及物質相互作用的精妙方法。現在,人們不僅可以在溶液中對單個分子進行檢測和成像,而且可以通過對單分子的光譜性質進行測量,從而對化學反應的途徑進行實時監
影響分子熒光強度因素
影響分子熒光強度因素有:1 )躍遷類型:只有π—π* 及 n —π*躍遷結構的分子才會產生熒光。而且π—π*躍遷的量子效率比 n —π*躍遷的要大得多(前者大、壽命短)。2 )共軛效應:共軛度越大,熒光越強。3 )剛性結構:分子剛性( Rigidity )越強,分子振動少,與其它分子碰撞失活的機率下
影響分子熒光強度因素
影響分子熒光強度因素有:1 )躍遷類型:只有π—π* 及 n —π*躍遷結構的分子才會產生熒光。而且π—π*躍遷的量子效率比 n —π*躍遷的要大得多(前者大、壽命短)。2 )共軛效應:共軛度越大,熒光越強。3 )剛性結構:分子剛性( Rigidity )越強,分子振動少,與其它分子碰撞失活的機率下
影響分子熒光強度因素
影響分子熒光強度因素有:1 )躍遷類型:只有π—π* 及 n —π*躍遷結構的分子才會產生熒光。而且π—π*躍遷的量子效率比 n —π*躍遷的要大得多(前者大、壽命短)。2 )共軛效應:共軛度越大,熒光越強。3 )剛性結構:分子剛性( Rigidity )越強,分子振動少,與其它分子碰撞失活的機率下
發射光譜法與原子熒光、分子熒光、分子磷光法的差別?
原子發射是利用高溫等產生氣態原子并將它們激發,收集測量回到基態時所發出的光,原子發射光譜的特點是復雜,一個原子可能有好多條譜線,可定性,也可定量。原子熒光,可分為兩種,一種是x-ray熒光,是對于內層電子的激發,導致外層電子向內層躍遷,產生的熒光。另一種是用特定光源去激發外層電子,并測量熒光。特點是
原子發射光譜法與原子熒光、分子熒光、分子磷光法的差別
原子發射是利用高溫等產生氣態原子并將它們激發,收集測量回到基態時所發出的光,原子發射光譜的特點是復雜,一個原子可能有好多條譜線,可定性,也可定量。 原子熒光,可分為兩種,一種是x-ray熒光,是對于內層電子的激發,導致外層電子向內層躍遷,產生的熒光。另一種是用特定光源去激發外層電子,并測量熒光
熒光光譜儀單分子熒光檢測方法分析
單分子熒光檢測。單分子熒光分析是實現單分子檢測最靈敏的光分析技術。單分子熒光檢測的關鍵在于確保被照射的體積中只有一個分子與激光發生作用以及消除雜質熒光的背景干擾。單分子熒光檢測可提供單分子水平上生物分子反應的動力學信息,分子構象以及構象隨時間的變化,因此尤其在生命科學領域中具有廣闊的應用前景,為
分子熒光光度法測定二氯熒光素
分子熒光光度法測定二氯熒光素實驗實驗中修改部分一、實驗目的:1、(書)??????????2、掌握熒光分光光度計的結構及基本使用方法??????????3、熟悉熒光分光光度計的應用二、方法原理:(書)三、儀器和試劑:儀器:Cary/Eclipse熒光分光光度計。該儀器使用氙弧燈作為激發光源。在190
分子熒光光譜分析
分子熒光光譜分析編輯molecular fluorescence analysis當物質分子吸收了特征頻率的光子,就由原來的基態能級躍遷至電子激發態的各個不同振動能級。激發態分子經與周圍分子撞擊而消耗了部分能量,迅速下降至第一電子激發態的最低振動能級,并停留約10-9秒(10的負9次方秒)之后,直接
分子熒光量子產率
熒光量子產率(Quantum yield):熒光物質吸光后所發射的熒光的光子數與所吸收的激發光的光子數之比值。由于激發態分子的衰變過程包含輻射躍遷和非輻射躍遷,故熒光量子產率可表示為??????????????????????????? ?f? =? kf / (kf + ΣK) ?
分子熒光分析法的應用
1.特點熒光分子所處的外部化學環境對熒光強度有直接影響.選擇合適的條件不但可以使熒光加強.提高測定的靈敏度.同時.還可以控制干擾物質的熒光產生.改善分析的選擇性。分了熒光分析法具有如下特點:(l)靈敏度高.山于是在黑背景下測定熒光發射強度一般而言,分子熒光分析法的靈敏度比紫外一可見吸收光洪分析法高2
分子熒光光譜核心技術
光源:由于熒光樣品的熒光強度與激發光的強度成正比,因此,作為一種理想的激發光源應具備:足夠的強度、在所需光譜范圍內有連續的光譜、強度與波長無關(即光源的輸出是連續平滑等強度的輻射)、穩定的光強。常用的光源主要有氙燈,激光器等。 探測器: 熒光的強度通常比較弱,因此要求檢測器有較高的靈敏度。一般
分子熒光光譜實驗報告
一、實驗目的:??? 1.掌握熒光光度法的基本原理及激發光譜、發射光譜的測定方法;學會運用分子熒光光譜法對物質進行定性分析。??? 2.了解熒光分光光度計的構造和各組成部分的作用。??? 3.了解影響熒光產生的幾個主要因素。二、實驗內容:? ? 測定熒光黃/水體系的激發光譜和發射光譜;? ? 首先根
分子熒光分析法的應用
1:特點 熒光分子所處的外部化學環境對熒光強度有直接影響.選擇合適的條件不但可以使熒光加強.提高測定的靈敏度.同時.還可以控制干擾物質的熒光產生.改善分析的選擇性。分了熒光分析法具有如下特點: (l)靈敏度高.山于是在黑背景下測定熒光發射強度一般而言,分子熒光分析法的靈敏度比紫外一
原子發射光譜法與原子熒光、分子熒光、分子磷光光譜法...
原子發射光譜法與原子熒光、分子熒光、分子磷光光譜法的差別 原子發射是利用高溫等產生氣態原子并將它們激發,收集測量回到基態時所發出的光,原子發射光譜的特點是復雜,一個原子可能有好多條譜線,可定性,也可定量。原子熒光,可分為兩種,一種是x-ray熒光,是對于內層電子的激發,導致外層電子向內層躍遷,
熒光分子的微環境是怎樣影響熒光強度的熒光強度
1.溶劑的影響同一種熒光物質存不同溶劑中,其熒光光譜的位置和強度可能有明顯不同。例如,許多共軛芳香烴化合物的熒光強度隨溶劑極性:的增加而增強,且熒光峰波長向長波方向發時發生了π→π*躍遷,其激發態比基態的極性更大,隨著溶劑極性的增大,對激發態比對基態產生更大的穩定作用,結果使熒光光譜發生了紅移。2.
熒光分子的微環境是怎樣影響熒光強度的熒光強度
1.溶劑的影響同一種熒光物質存不同溶劑中,其熒光光譜的位置和強度可能有明顯不同。例如,許多共軛芳香烴化合物的熒光強度隨溶劑極性:的增加而增強,且熒光峰波長向長波方向發時發生了π→π*躍遷,其激發態比基態的極性更大,隨著溶劑極性的增大,對激發態比對基態產生更大的穩定作用,結果使熒光光譜發生了紅移。2.