<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>

  • 核磁共振的原理

    NMR(核磁共振)nuclear magnetic resonance。A phenomenon in which transitionsin the magnetic energy states of the nuclei of atoms are induced when the atoms are placed in a static magnetic fieldand subjected to an oscillatory magnetic field, perpendicular tothe static field, and oscillating at some characteristic radio frequency.簡單的說就是,處于一個靜磁場中的核子(質子和中子),會由于磁場的作用而處于不同的能量狀態,當一個外界的擺動的磁場來擾動處于“平衡”狀態的核子時,吸收了能量的核子就會從不同的能級之間要遷,并再此過......閱讀全文

    核磁共振的原理

    NMR(核磁共振)nuclear magnetic resonance。A phenomenon in which transitionsin the magnetic energy states of the nuclei of atoms are induced when the atoms a

    核磁共振的原理

    原子核的自旋。核磁共振主要是由原子核的自旋運動引起的。不同的原子核,自旋運動的情況不同,可以用核的自旋量子數I來表示。自旋量子數與原子的質量數和原子序數之間存在一定的關系。原子核是帶正電荷的粒子,不能自旋的核沒有磁矩,能自旋的核有循環的電流,會產生磁場,形成磁矩(μ)。當自旋核(spin nucle

    核磁共振的原理

    核磁共振用NMR(Nuclear Magnetic Resonance)為代號。1.原子核的自旋核磁共振主要是由原子核的自旋運動引起的。不同的原子核,自旋運動的情況不同,它們可以用核的自旋量子數I來表示。自旋量子數與原子的質量數和原子序數之間存在一定的關系,大致分為三種情況,見表8-1。I為零的原子

    核磁共振的原理

    NMR(核磁共振)nuclear magnetic resonance。A phenomenon in which transitionsin the magnetic energy states of the nuclei of atoms are induced when the atoms a

    核磁共振的原理

    核磁共振主要是由原子核的自旋運動引起的。不同的原子核,自旋運動的情況不同,它們可 以用核的自旋量子數I來表示。自旋量子數與原子的質量數和原子序數之間存在一定的關系,大致分為三種情況,如下表。分類質量數原子序數自旋量子數INMR信號I偶數偶數0無II偶數奇數1,2,3,…(I為整數)有III奇數奇數或

    核磁共振的原理

    核磁共振,全稱“核磁共振成像(MRI)”。是一種醫學影像診斷技術,亦稱“核磁共振成像術”。利用人體組織中某種原子核的核磁共振現象,將所得射頻信號經過電子計算機處理,重建出人體某一層面的圖像,并據此作出診斷。  1924年W.泡利為了解釋原子光譜的某些結構,提出原子核具有角動量(即自旋)的假說。194

    核磁共振原理

    1.原子核的自旋 圖 核磁共振原理圖核磁共振主要是由原子核的自旋運動引起的。不同的原子 核,自旋運動的情況不同,它們可以用核的自旋量子數I來表示。自旋量子數與原子的質量數和原子序數之間存在一定的關系,大致分為三種情況:I為零的原子核 可以看作是一種非自旋的球體;I為1/2的原子核可以看作是一種電荷分

    核磁共振譜的原理

      根據量子力學原理,與電子一樣,原子核也具有自旋角動量,其自旋角動量的具體數值由原子核的自旋量子數I決定,原子核的自旋量子數I由如下法則確定:  1)中子數和質子數均為偶數的原子核,自旋量子數為0;  2)中子數加質子數為奇數的原子核,自旋量子數為半整數(如,1/2, 3/2, 5/2);  3)

    核磁共振的成像原理

    核磁共振成像原理原子核自旋,有角動量。由于核帶電荷,它們的自旋就產生磁矩。當原子核置于靜磁場中,本來是隨機取向的雙極磁體受磁場力的作用,與磁場作同一取向。以質子即氫的主要同位素為例,它只能有兩種基本狀態:取向“平行”和“反向平行”,他們分別對應于低能和高能狀態。精確分析證明,自旋并不完全與磁場趨向一

    核磁共振(NMR)原理

    以氫核為例,由于帶電核的旋轉,會產生一個微小的磁場,一般而言,自旋雜亂無章,但若將其置于較強磁場中,其必定沿著磁場的方向重新排列,當核的自旋軸偏離了外加磁場的方向時,核自旋產生的磁場即會與外磁場相互作用,使原子核除了自旋之外,還會沿著圓錐形的側面圍繞原來的軸擺動,(類似于陀螺的擺動),這種運動方式稱

    核磁共振的原理和特點

    核磁共振是磁矩不為零的原子核,在外磁場作用下自旋能級發生塞曼分裂,共振吸收某一定頻率的射頻輻射的物理過程。核磁共振波譜學是光譜學的一個分支,其共振頻率在射頻波段,相應的躍遷是核自旋在核塞曼能級上的躍遷。

    核磁共振的原理和應用

    核磁共振是磁矩不為零的原子核,在外磁場作用下自旋能級發生塞曼分裂,共振吸收某一定頻率的射頻輻射的物理過程。核磁共振波譜學是光譜學的一個分支,其共振頻率在射頻波段,相應的躍遷是核自旋在核塞曼能級上的躍遷。

    核磁共振譜的原理簡介

      根據量子力學原理,與電子一樣,原子核也具有自旋角動量,其自旋角動量的具體數值由原子核的自旋量子數I決定,原子核的自旋量子數I由如下法則確定:  1)中子數和質子數均為偶數的原子核,自旋量子數為0;  2)中子數加質子數為奇數的原子核,自旋量子數為半整數(如,1/2, 3/2, 5/2);  3)

    核磁共振成像的原理簡介

      原子核自旋,有角動量。由于核帶電荷,它們的自旋就產生磁矩。當原子核置于靜磁場中,本來是隨機取向的雙極磁體受磁場力的作用,與磁場作同一取向。以質子即氫的主要同位素為例,它只能有兩種基本狀態:取向“平行”和“反向平行”,他們分別對應于低能和高能狀態。精確分析證明,自旋并不完全與磁場趨向一致,而是傾斜

    核磁共振波譜法的原理

    核磁共振波譜分析法(NMR)是分析分子內各官能團如何連接的確切結構的強有力的工具。磁場中所處的不同能量狀態(磁能級)。原子核由質子、中子組成,它們也具有自旋現象。描述核自旋運動特性的是核自旋量子數I。不同的核在一個外加的高場強的靜磁場(現代NMR儀器由充電的螺旋超導體產生)中將分裂成2I+1個核自旋

    核磁共振波譜法的原理

    核磁共振波譜分析法(NMR)是分析分子內各官能團如何連接的確切結構的強有力的工具。磁場中所處的不同能量狀態(磁能級)。原子核由質子、中子組成,它們也具有自旋現象。描述核自旋運動特性的是核自旋量子數I。不同的核在一個外加的高場強的靜磁場(現代NMR儀器由充電的螺旋超導體產生)中將分裂成2I+1個核自旋

    核磁共振技術的原理簡介

      核磁共振技術可以直接研究溶液和活細胞中相對分子質量較小(20,000 道爾頓以下)的蛋白質、核酸以及其它分子的結構, 而不損傷細胞。  核磁共振的基本原理是:原子核有自旋運動,在恒定的磁場中,自旋的原子核將繞外加磁場作回旋轉動, 叫進動(precession)。進動有一定的頻率,它與所加磁場的強

    核磁共振的基本原理

    原子核的自旋核磁共振主要是由原子核的自旋運動引起的。不同的原子核,自旋運動的情況不同,它們可 以用核的自旋量子數I來表示。自旋量子數與原子的質量數和原子序數之間存在一定的關系,大致分為三種情況,如下表。分類質量數原子序數自旋量子數INMR信號I偶數偶數0無II偶數奇數1,2,3,…(I為整數)有II

    核磁共振成像原理概述

      氫核是人體成像的首選核種:人體各種組織含有大量的水和碳氫化合物,所以氫核的核磁共振靈活度高、信號強,這是人們首選氫核作為人體成像元素的原因。NMR信號強度與樣品中氫核密度有關,人體中各種組織間含水比例不同,即含氫核數的多少不同,則NMR信號強度有差異,利用這種差異作為特征量,把各種組織分開,這就

    核磁共振成像性能原理

      從宏觀上看,作進動的磁矩集合中,相位是隨機的。它們的合成取向就形成宏觀磁化,以磁矩M表示。就是這個宏觀磁矩在接收線圈中產生核磁共振信號。在大量氫核中,約有一半略多一點處于低等狀態。可以證明,處于兩種基本能量狀態核子之間存在動態平衡,平衡狀態由磁場和溫度決定。當從較低能量狀態向較高能量狀態躍遷的核

    核磁共振法的基本原理

    核磁共振主要是由原子核的自旋運動引起的。不同的原子核,自旋運動的情況不同,它們可 以用核的自旋量子數I來表示。自旋量子數與原子的質量數和原子序數之間存在一定的關系,大致分為三種情況,如下表。分類質量數原子序數自旋量子數INMR信號I偶數偶數0無II偶數奇數1,2,3,…(I為整數)有III奇數奇數或

    核磁共振波譜的基本原理

    基本原理就是外加磁場和原子自身的磁場二者頻率一致時就會產生共振,放出一個信號。主要獲得化合物的結構信息。

    核磁共振波譜儀核磁共振譜儀基本原理

    1)?原子核的基本屬性a.原子核的質量和所帶電荷 ——是原子核的最基本屬性。b.原子核的自旋和自旋角動量 ——量子力學中用自旋量子數I描述原子核的運動狀態。原子核的自旋運動具有一定的自旋角動量;其自旋角動量也是量子化的,它與自旋量子數 I 間的關系為:各種核的自旋量子數質量數A原子序數Z自旋量子數I

    核磁共振測化合物結構的原理

    不同元素對同一磁場的響應是不同的,由于原子核會繞著磁場進動,旋磁比不同,即旋轉的頻率和磁場的比值不同,這樣就區分出來了

    核磁共振波譜儀原理及應用擴展

    核磁共振波譜儀是基于核磁矩不等于零的原子核,在靜磁場作用下,對穩定頻率電磁波的吸收現象來研究物質結構的一種工具。分析工作者從共振峰的數和相對的強度、化學位移和馳豫時間等參數進行物質結構分析。由于核磁共振技術具有深入物質內部,而不破壞樣品的特點,并隨著核磁共振理論及波譜儀 器的迅速發展,核磁共振波譜儀

    CT和核磁共振原理有啥區別

    CT掃描儀可以用于對人體的全身掃描,而核磁共振掃描儀則主要用于對人體的軟組織的掃描。通過這兩種儀器,醫生可以獲得詳細的三維的人體剖面圖象,清楚地看到人體組織中的細微的變化,為科學的診斷提供有力的證據。CT掃描儀和核磁共振掃描儀的外形十分相似,它們所獲得的三維圖像也很相似,但是應該指出這兩種儀器的成像

    核磁共振現象的原理和表現形式

    原子核是帶正電荷的粒子,不能自旋的核沒有磁矩,能自旋的核有循環的電流,會產生磁場,形成磁矩(μ)。μ=γP式中,P是角動量矩,γ是磁旋比,它是自旋核的磁矩和角動量矩之間的比值,因此是各種核的特征常數。當自旋核(spin nuclear)處于磁感應強度為B0的外磁場中時,除自旋外,還會繞B0運動,這種

    臺式核磁共振波譜成像的原理及應用

    臺式核磁共振波譜成像(MRI)也稱磁共振成像,是利用核磁共振原理,通過外加梯度磁場檢測所發射出的電磁波,據此來繪制成物體內部的結構圖像。將臺式核磁共振成像技術用于人體內部結構的成像,就產生出一種革命性的醫學診斷工具,現在臺式核磁共振成像技術已在物理、化學、醫療、石油化工、考古等方面獲得了廣泛的應用。

    核磁共振波譜法的基本原理

    根據量子力學原理,與電子一樣,原子核也具有自旋角動量,其自旋角動量的具體數值由原子核的自旋量子數I決定,原子核的自旋量子數I由如下法則確定:1)中子數和質子數均為偶數的原子核,自旋量子數為0;2)中子數加質子數為奇數的原子核,自旋量子數為半整數(如,1/2, 3/2, 5/2);3)中子數為奇數,質

    核磁共振波譜法的原理和應用特點

    核磁共振波譜法(英語:Nuclear Magnetic Resonance spectroscopy,簡稱 NMR spectroscopy 或?NMRS?),又稱核磁共振波譜,是將核磁共振現象應用于測定分子結構的一種譜學技術。核磁共振波譜的研究主要集中在氫譜和碳譜兩類原子核的波譜。人們可以從核磁共

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频