一項新的研究發現揭示了抗生素耐藥性是如何能在抗生素存在的時候在細菌細胞間傳播的,而這些抗生素理應能阻止細菌生長。這些結果揭示,先前對藥物敏感的細菌能夠在長時間接觸抗生素時存活下來以表達其剛剛獲得的耐藥基因,進而有效地讓它們不受抗生素的影響。 這一過程的基礎機制——包括一個在幾乎所有細菌中都被發現的棄藥泵——代表的是能抵制抗生素耐藥性的標靶。細菌可從其它細菌那里通過諸如細菌接合等基因水平轉移機制來接受小片段的DNA(質粒),這種過程常常能賦予接受方細胞基因優勢,其中包括對抗生素的耐藥性。在耐藥菌中已經發現了大量的接合質粒,它們攜帶著1或多種對大多數(如果不是所有的)臨床所用抗生素藥物的耐藥基因。盡管在致病菌中,細菌結合是耐藥性傳播的主要方法,但該過程的諸多方面仍不清楚,還有待在體內的描述。 應用活細胞顯微鏡檢查及一種觀察質粒在細胞水平實時傳播的新型系統,Sophie Nolivos和同事對一個攜帶四環素耐藥基因質粒的轉移進......閱讀全文
世衛組織一份新的報告首次審視了全球的抗菌素耐藥情況,包括抗生素耐藥性,表明這種嚴重威脅不再是未來的一種預測,目前正在世界上所有地區發生,有潛力影響每個人,無論其年齡或國籍。當細菌發生變異,使抗生素對需要用這種藥物治
抗生素耐藥性問題已成為全球關注的焦點。我國是世界上濫用抗生素最為嚴重的國家之一,耐藥菌引起的醫院感染人數,已占到住院感染患者總人數的30%左右。臨床分離的一些細菌如大腸埃希菌對環丙沙星耐藥性已居世界首位。因此,有專家預言,我國有可能率先進入“后抗生素時代”,亦即回到抗生素發現之前的時代。耐藥菌另一個
遠在瑞典的學者喬奇姆·拉爾森,沒想到他們的一篇研究論文最近兩天在中國成為關注焦點。包括拉爾森在內的瑞典哥德堡大學抗生素耐藥性研究中心的4位研究者在《Microbiome(微生物)》期刊發表了《人、動物和環境耐藥基因組的結構與多樣性(The structure and diversity of h
分析測試百科網訊 2017年03月22日,農業部發布關于征求《全國遏制動物源細菌耐藥行動計劃(2017—2020年)(征求意見稿)》(以下簡稱“意見稿”)修改意見的函。該“意見稿”根據《遏制細菌耐藥國家行動計劃(2016-2020年)》《“十三五”國家食品安全規劃》和《“十三五”國家農產品質量安
遠在瑞典的學者喬奇姆·拉爾森,沒想到他們的一篇研究論文最近兩天在中國成為關注焦點。包括拉爾森在內的瑞典哥德堡大學抗生素耐藥性研究中心的4位研究者在《Microbiome(微生物)》期刊發表了《人、動物和環境耐藥基因組的結構與多樣性(The structure and diversity of
抗生素耐藥性如今是全世界所面臨的巨大公共健康問題,近日聯合國將細菌抗生素耐藥性定義為“對現代醫藥最大的威脅之一”,同時在2016年聯合國大會上各代表國針對這一健康問題進行了深入的探討。 目前在美國每年至少有200萬人感染抗生素耐藥性細菌,同時又2.3萬人因此而死亡,而主要問題取決于人們對抗生素
上個世紀初,世界上三分之一人死于肺炎、結核、腸炎及腹瀉。今天心臟病和癌癥成為人類的主要殺手,因肺炎和流感死亡的人數則不到4.5%。 這是人類應用抗生素在公共衛生領域取得的重要成果[1]。而現在人類卻又走到了事情的另一個極端:濫用抗生素導致耐藥菌的出現及廣泛傳播。 一項世界規模的宏基因組研究顯示
抗生素的濫用導致了細菌耐藥性蔓延這一“世紀危機”。為了推動全社會合理使用抗生素,世界衛生組織(WHO)自2015年以來將每年11月的第三周確定為“世界提高抗生素認識周(World Antibiotic Awareness Week, WAAW)”。在2018年WAAW來臨之際,青島能源所發布了自
抗生素的濫用導致了細菌耐藥性蔓延這一“世紀危機”。為了推動全社會合理使用抗生素,世界衛生組織(WHO)自2015年以來將每年11月的第三周確定為“世界提高抗生素認識周(World Antibiotic Awareness Week, WAAW)”。在2018年WAAW來臨之際,中國科學院青島生物
關鍵詞:鏈球菌;抗生素;藥敏試驗;耐藥性摘要:鏈球菌病是主要的人獸共患傳染病之一,發病率較高,給養殖業和公共安全帶來極大危害,其防治一直是人們關注的焦點,近年來,已產生大量耐藥性菌株。以省市為序,總結了自2000年以來鏈球茵表型耐藥的情況,以期對鏈球菌耐藥性的研究以及臨床用藥有所幫助。 豬鏈球菌病
隨著關于“超級細菌”的新聞的不斷出現,人們對耐藥細菌和超級細菌的擔心和恐慌也與日俱增。誠然,耐藥基因的出現成為了壓垮抗生素的最后一根的稻草,而超級細菌的出現則給人類的生命健康帶來了紅果果的威脅。那么在這些威脅面前,科學家們如何應用最新知識和技術來創造對抗這些細菌的新技術和新方法呢?本文就為大家盤
腫瘤異質性是惡性腫瘤的特征之一,可使腫瘤的生長速度、侵襲與轉移、藥物敏感性等多方面產生差異。之前的研究表明,液體活檢(特別是cfDNA (無細胞DNA))可以很好地檢測獲得性耐藥的腫瘤異質性。但該方法尚缺少大規模隊列驗證。近日,由包括麻省總醫院、麻省理工學院布羅德研究所、哈佛大學及IBM Re
“當前,細菌耐藥性(AMR)已經成為全球公共衛生領域最復雜的威脅!”日前,中國工程院院士、國家食品安全風險評估中心研究員陳君石在接受本報記者采訪時表示,抗菌藥物的發現為保證人類健康發揮了重要作用,但由于這類藥物在臨床治療、畜牧業、水產養殖等方面存在不合理應用,甚至誤用濫用情況,致使多重耐藥菌甚至
遏制細菌耐藥性,中國行動獲點贊 ——訪世界衛生組織抗生素耐藥性總干事特別代表福田敬二 在抗生素發現之前,感冒曾引發瘟疫、拉肚子經常耗盡患者最后的氣力、皮膚劃個口子就可能化膿導致死亡。那樣的歷史會在未來重演嗎? 世界衛生組織認為,人類可能正在走向這條道路。目前,抗生素耐藥性問題正對全球公共衛
恐怕連喬奇姆拉爾松也沒想到,他們的一篇常規論文會在中國引起軒然大波。11月25日,當本網記者聯系到拉爾松時,他回復道:最近采訪我的中國媒體實在太多了,我真切地希望能有一家具有影響力的媒體幫忙澄清我們的觀點。 2016年11月,包括拉爾松在內的瑞典哥德堡大學抗生素耐藥性研究中心4位學者在《M
抗生素的出現,拯救了無數生命。但是細菌對于抗生素產生的耐藥性問題也逐年加重,新藥研發的速度遠跟不上細菌耐藥出現的速度。 多年來,由于抗生素的濫用,多種耐藥性基因開始在全球蔓延。一旦大腸桿菌、肺炎克雷伯菌、鮑曼不動桿菌和其它類似的腸道棲息生物產生耐藥性,那么對革蘭氏陰性菌有很強殺菌作用的多粘菌素
烏干達里拉一名結核病患者的胸腔X光片。全球每年新增結核病病例的80%來自于22個國家,烏干達是其中之一。 圖片來源:J. MATTHEWS/PANOS 表格為結核病近年來的病例數量趨勢,以及與HIV共同感染的病例數量趨勢;圖為新型多重耐藥性結核病病例在全球的分布情況。圖片來源:WHO 在與
用語不清不利于我們在全球范圍內應對抗微生物藥物效果日漸減弱的現狀。在本文中,作者Marc Mendelson及同事敦促人們規范抗微生物藥物耐藥性領域的用語。 來自Nature自然科研 長期以來,臨床醫生一直都知道細菌、病毒和真菌等微生物的耐藥性已經高到了令人警惕的程度。這種復雜的健康威脅通常
提及抗生素,大家并不陌生,我們對抗生素的第一反應往往是其可以幫助殺菌,抵御感染性疾病的發生,的確,抗生素最初設計的目的就是幫助人類抵御感染性疾病的發生;1928年英國細菌學家弗萊明就首先發現了世界上第一種抗生素—青霉素,自此人類在抗生素的發現及相關領域的研究逐漸開展開來。 近年來,大量研究都發
蔣志海制圖 曾有一項世界規模的宏基因組研究顯示,含耐藥基因的微生物在自然界中無處不在。這意味著人類有可能回到沒有抗生素的時代,醫療體系中的很大一部分可能會退回到抗生素發明之前的境地,輕微的細菌感染都可能引起致命的后果。 ■本報記者 張晶晶 超乎現代人想象的一件事情是,在20世紀初,地球上
2 目前國內外應用于檢測耐藥結核桿菌的分子生物學方法隨著分子生物學的發展,尤其是PCR技術的問世,檢測耐藥可以直接從基因入手,這樣與傳統的結核桿菌藥敏試驗相比,不僅大大縮短了檢測周期,實現了自動化,而且也降低了生物實驗室的危險性。耐藥檢測包括用PCR擴增基因組內攜帶的耐藥性區域,和進行擴增產物的突變
現在,進入冬季感冒高發時期,濫用抗生素的現象又有所抬頭。圖片來源于網絡 “你知道抗生素對細菌性感冒才有效,病毒性感冒無需使用抗生素嗎?” 對很多人來說簡單明白的常識,但同時對很多人,即使有些高知人群,卻也是知識的盲點。有不少國人習慣于一感冒就輸液。 日前,在由聯合國糧農組織和世界衛生組織共
“北京霧霾中有耐藥細菌!”最近幾天籠罩霧霾的北京市民又一次這條朋友圈的消息震驚了! “耐藥細菌”不就是俗稱的“超級細菌”嗎?這項來自瑞典哥德堡大學的研究成果,論文標題為“The structure and diversity of human, animal and environmental
抗生素在對抗細菌感染中發揮著關鍵作用,已經拯救了數十億人的生命。本文中,小編整理了抗生素領域最新的重要研究進展,分享給大家。【1】Nat Microbiol:局部抗生素或能誘發意想不到的抗病毒反應DOI:10.1038/s41564-018-0138-2近日,一項刊登在國際雜志Nature Micr
圍繞湄公河三角洲的地區因為瘧疾蟲泛濫而聲名狼藉。上世紀五六十年代,瘧原蟲已兩次對關鍵藥物產生耐藥性,其潛在的基因突變無情地席卷全球,迫使公共衛生官員不得不尋找抵抗瘧疾的新方法。 現在,耐藥性突變再次卷土重來。過去十年,治療瘧疾最有效的藥物青蒿素已在柬埔寨、緬甸、越南、老撾以及泰國邊境地區越來越
近年來,科學家們通過不斷研究來深入探索癌細胞對靶向性藥物或療法產生耐藥性的機制,同時研究者們取得了一定的研究進展,在此對此進行了盤點。 【1】新研究揭示癌細胞耐藥機制 聯合用藥讓癌癥不再回來 doi: 10.1093/nar/gkw1026 最近科學家們在理解癌細胞為何抵抗化療問題上取得了
全球消滅天花等事件證明一個應對公共健康威脅的國際機制是可以起到作用的。我們必須進行嘗試,否則抗生素藥物所獲得的健康成果可能會因此消失。發展中國家不受管制的藥物銷售造成抗生素耐藥性的增加 上個月,世界衛生組織(WHO)制作了一張抗生素耐藥性的全球地圖,警告稱一個“后抗生素”的世界可能很快會成為現
當前醫院內外的新的耐藥菌在不斷出現,常導致手術治療失敗、并發癥增多、感染復發、住院時間延長、昂貴抗生素及其它藥物的使用增加等。耐藥株還隨著國際貿易及旅游業的高速發展而在全球蔓延。由于新抗生素的廣泛使用,各個細菌對抗生素的耐藥譜不斷在發生變化,特別是耐藥性經常以多重耐藥為特點,有時甚至找不到可治之藥
過去100年發生的多起事件讓世人密切關注未來發生傳染病大流行的風險。2018年是1918年流感流行的100周年,估計有數千萬人死于100年前那次流感。現在擁有比一個世紀前更好的干預措施,季節性流感疫苗,但不一定完全有效預防。每年需要接種或選擇接種的人所占比例較小。世界上還有抗生素可以幫助治療細菌
我們該如何推動制藥行業研發出對抗耐藥性細菌的新藥呢? 盡管耐藥性細菌感染的患病率出現了驚人的增長,但是在過去十年里獲得審批的新抗生素的數量卻遠遠低于20世紀80年代高峰期時的抗生素數量。而對于嚴重的革蘭氏陰性細菌感染而言,情況尤其令人擔憂:現代抗生素已經無法治療某些革蘭氏陰性細菌感染了。而無