<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>

  • 印度開發出性能優越成本低廉的水分解催化劑

    據《印度時報》近日消息,印度科學研究所(IISc)研究人員開發出一種低成本催化劑,可加速水分解,產生氫氣。這是邁向大規模制氫的重要一步。相關研究成果3月27日發表在德國《應用化學》(Angewandte Chemie)雜志上。 利用電分解水是被廣泛采用的制氫方法,其中析氧反應過程非常緩慢,限制了整體效率。目前最有效的催化劑是由釕和鉑等貴金屬制成的,它們既昂貴又稀有。 IISc的一個團隊通過將氧化鈷與鈉磷酸鹽結合起來,開發出一種低成本催化劑。他們將偏磷酸鈉和氧化鈷在缺氧爐中與氬氣一起焙燒,形成一塊部分燃燒的碳“薄片”,上面鋪滿由偏磷酸鈉構成的氧化鈷晶體。偏磷酸鹽形成強有力的框架,保持氧化鈷完整,并具有較高的穩定性,使催化劑在多個周期內保持活性。碳床的存在提高了催化劑的導電性和效率。與其他催化劑相比,該催化劑電流密度(反應發生速度的測量)比二氧化釕還高,顯示出更強的催化活性。 新催化劑的材料成本比目前最先進的二氧化釕催化劑......閱讀全文

    日本設計出陽光分解水的新型催化劑

       日本科學家用納米材料設計出一種新型催化劑,可有效催化人工模擬天然光合作用的關鍵步驟——利用陽光分解水,有望提高氫氣生產效率、降低成本。   低成本生產氫氣是實現“氫經濟”的基礎。理想方案之一是模擬植物光合作用的光反應階段,借助陽光分解水。目前,人工分解水的技術往往要消耗額外能量和其他原料,或者

    新復合催化劑可高效分解水制氫

       美國休斯頓大學官網19日發布公告稱,該校研究人員聯合加州理工大學的同行,發現了一種能高效分解水制氫的新型復合催化劑,水制氫效率已達實用水平,且成本低、無毒,有望克服水制氫的難題,推動氫燃料電池的發展。  新催化劑的制取過程:b-c表示600℃下制取硒化鎳泡沫,d-e表示500℃下制取鉬硒化硫覆

    新型催化劑實現高效全分解水制氫

    高效全分解水制氫示意圖。中國科學院大連化學物理研究所供圖  中國科學院大連化學物理研究所研究員章福祥團隊在寬光譜捕光催化劑全分解水制氫研究中取得新進展。他們發現金屬載體強相互作用可顯著促進Ir/BiVO4光催化劑體系的界面電荷分離和水氧化性能,進而建立了高效的“Z”機制全分解水制氫體系,其室溫下制氫

    新納米催化劑能在可見光條件下快速分解水

      據美國每日科學網站12月16日(北京時間)報道,中美科學家攜手,以氧化鈷納米粒子為催化劑,首次采用可見光,快速地將水分解成了氫氣和氧氣,簡單快捷且能源轉化效率較高。相關研究發表在周日出版的《自然·納米技術》雜志網絡版上。   該研究領導者、美國休斯敦大學電子和計算機工程學院副教授包季明(音譯)

    提升寬光譜捕光催化劑全分解水制氫的量子效率

    近日,大連化物所太陽能研究部(DNL16)李燦院士、章福祥研究員、祁育副研究員等人在利用寬光譜捕光催化劑構筑全分解水制氫體系研究方面取得新進展,基于BiVO4可見光催化劑不同晶面雙助催化劑的優化開發及其選擇性負載,顯著提升了其用于水氧化和“Z”機制全分解水制氫性能,使全分解水制氫量子效率達到12.3

    中性水全分解的“雙面神”-三元納米片電催化劑出爐

      氫能作為一種能量高、潔凈的可再生能源受到廣泛關注。通過電化學水解制備氫氣是當前研究熱點之一。近年來,全水解電極催化劑的設計制備取得了矚目的研究成果。然而,尋找能在中性水電解質中同時展現高活性、高穩定性的水氧化和還原非貴金屬電催化劑仍然是電解水制氫研究領域的一大挑戰。  近日,中國科學技術大學教授

    中國科大廣譜分解水制氫的光催化劑研究獲進展

      氫能是一種非常清潔且可儲存運輸的可再生能源,利用太陽能分解水制備氫氣已成為一種備受關注的清潔新能源技術。無機半導體材料是目前應用最廣的光催化活性物質,通常高光催化活性的半導體都具有寬帶隙,使其只能吸收紫外光等短波太陽光,而紫外光只占太陽光全譜的5%左右,造成了充分利用太陽能的困難。因此,非常有必

    寬光譜捕光催化劑全分解水制氫研究取得新進展

    近日,中國科學院院士李燦,中科院大連化學物理研究所研究員章福祥、副研究員祁育等人在利用寬光譜捕光催化劑構筑全分解水制氫體系研究方面取得新進展,基于釩酸鉍(BiVO4)可見光催化劑不同晶面雙助催化劑的優化開發及其選擇性負載,顯著提升了其用于水氧化和Z機制全分解水制氫性能,使全分解水制氫量子效率達到12

    NOX直接分解催化劑的研究進展

      0引言?  NOX不僅對人們身體健康有害,而且在空氣中積累到一定量時極易引發光化學煙霧和酸雨,因此消除NOX已經成為相關學者所關注的焦點[1, 2]。NOX的來源可以分為移動源和固定源,汽車和船舶是最常見的移動源,而電廠中用的大型鍋爐是固定源。通常利用三效催化劑和NOX儲存還原催化劑減少汽車尾氣

    Nat.-Comm.:提升寬光譜捕光催化劑全分解水制氫量子效率

      近日,中國科學院院士、中科院大連化學物理研究所太陽能研究部研究員李燦,與研究員章福祥/副研究員祁育等,在利用寬光譜捕光催化劑構筑全分解水制氫體系研究中取得新進展。基于BiVO4可見光催化劑不同晶面雙助催化劑的優化開發及其選擇性負載,顯著提升其用于水氧化和“Z”機制全分解水制氫性能,使全分解水制氫

    提升寬光譜捕光催化劑全分解水制氫的量子效率研究進展

      近日,中國科學院院士、中科院大連化學物理研究所太陽能研究部研究員李燦,與研究員章福祥/副研究員祁育等,在利用寬光譜捕光催化劑構筑全分解水制氫體系研究中取得新進展。基于BiVO4可見光催化劑不同晶面雙助催化劑的優化開發及其選擇性負載,顯著提升其用于水氧化和“Z”機制全分解水制氫性能,使全分解水制氫

    李燦院士在寬光譜捕光催化劑全分解水制氫研究取得進展

      近日,中國科學院大連化學物理研究所太陽能研究部中科院院士李燦、研究員章福祥等在寬光譜捕光催化劑Z機制全分解水制氫研究中取得新進展。研究結果發現,通過設計和調控BiVO4表面助催化劑Au的擔載,以及雙助催化劑(Au和CoOx)的選擇性負載,可有效促進BiVO4的產氧性能及其與氧化還原電對離子間的電

    納米催化劑讓水“燃燒”

        研究人員使用新的納米催化劑,利用陽光將水分子分解,最終制出氫氣燃料  技術總是在尋找各種方法,使能源更容易地變“綠”。前不久,來自美國紐約州的研究人員制造出了一種新型長效催化劑,能夠利用太陽光的能量,經過一系列反應,最終產生氫氣。氫氣是一種無碳燃料。  《科學》雜志在線報道稱

    水的高效分解通過它也能實現

    原文地址:http://news.sciencenet.cn/htmlnews/2023/5/500097.shtm

    許昌學院水熱傳輸生長鐵銹薄膜分解水研究獲進展

       許昌學院(河南省微納米能量儲存與轉換材料重點實驗室)楊曉剛教授指導本科生王家稷等,針對全球廣泛存在的鐵銹廢棄物的低溫循環利用這一難題進行相關研究。他們借鑒自然界中類“鐘乳石”的傳輸機制,利用草酸作為傳輸劑、硝酸鈉作為表面電荷調控劑,將廢棄的鐵銹通過水熱法“搬運”到氟摻雜氧化錫(FTO)導電薄膜

    科學家發現烯烴復分解反應新型催化劑

    圖片說明:高效、清潔、快速的新型催化劑將促進醫學、生物學與材料科學研究。 (圖片來源:Nature) 美國科學家近日發現了烯烴復分解反應(olefin metathesis reaction)的新型催化劑。這一進展為藥學、生物學及材料科學研究提供了新型平臺。相關研究論文11月16日在線發表于

    新復合光催化劑能夠分解全氟辛酸

    據最新一期《化學工程雜志》報道,美國萊斯大學的化學工程師改進了他們對光動力催化劑的設計,該催化劑可快速分解全氟辛酸,全氟辛酸被認為是世界上最有問題的“永久化學污染物”之一。研究團隊在2020年發現,常用于化妝品的氮化硼粉末暴露在波長254納米的紫外線下時,可在短短幾個小時內破壞水樣中99%的全氟辛酸

    用微晶體和納米線來分解水

      科學家們正在尋找一種新的方法,以利用這個世界上最豐富的清潔能源之一:水。  通過納米晶(又稱量子點)與納米線相結合,科學家們開發了一種新材料,這種新材料有望將水分解成氧和氫燃料,可用于汽車,公交車,船和其它類型的交通工具。  “氫被看作是清潔能源的重要來源,因為水在加熱的時候,它是唯一的副產品,

    瑞士團隊研發磁性納米催化劑分解頑固污染物

      微污染物是水處理界的一個新興問題,它給我們的水體造成了不少的負擔,要將它們從污水中移除更是需要很多技術資源。對此,顯然我們不能坐以待斃。瑞士和德國是這方面的探路先鋒,此前我們就曾報道過德國巴登-符騰堡州(Baden-Württemberg)對地方污水廠的微污染物去除項目給予資助。而最近。最近,

    將鎳納米顆粒用作高效氨分解制氫催化劑

      以鈉型ZSM-5分子篩為載體,在啡咯啉配體絡合作用下制備均勻分散于ZSM-5分子篩的鎳納米顆粒,用作高效氨分解制氫催化劑。    隨著溫室氣體排放的增加和惡劣氣候的加劇,人類尋找可替代化石燃料的新能源迫在眉睫。氫氣(H2)被認為是最清潔的能源之一。然而,氫氣體積能量密度低,爆炸極限范圍較大(4%

    電解水制氫催化劑應用

    在寬pH范圍內開發高效穩定的電解水制氫催化劑,對緩解能源危機具有重要意義。一種錨定在高熵稀土氧化物(HEREOs)空位上的Pt納米顆粒(NPs),用于電解水高效制氫方法由南開大學杜亞平教授和香港理工大學黃勃龍教授等人首次報道。所制備的Pt-(LaCeSmYErGdYb)O表現出優異的電化學性能,在0

    “低溫氨分解制氫催化劑技術”通過科技成果評價

    近日,中國科學院大連化學物理研究所氫能與先進材料研究部和榆林中科潔凈能源創新研究院合作開發,具有自主知識產權的“低溫氨分解制氫催化劑技術”通過了中國石油和化學工業聯合會組織的科技成果評價。評價委員會一致認為:該研究成果創新性強,具有自主知識產權,催化劑性能指標處于國際領先水平。20Nm3/h產氫量低

    新型催化劑可高效分解二氧化碳

      長期以來,科學家們一直夢想模仿光合作用,用太陽光的能量,從二氧化碳和水中攫取烴燃料。據《科學》雜志7日報道,瑞士聯邦理工學院的化學家團隊,能讓一種廉價的新型化學催化劑以創紀錄的效率工作,使之高效利用太陽能電池的電力,將二氧化碳分解為富含能量的一氧化碳和氧氣。  報道稱,當二氧化碳分解成一氧化碳和

    中外學者合作完成電催化分解水研究

      華東理工大學物理系青年教師張波在加拿大多倫多大學做博士后期間,在電催化分解水研究領域取得突破,相關成果近日發表于《科學》。該項研究由多倫多大學、華東理工大學、斯坦福大學、中科院高能物理研究所北京同步輻射中心、加拿大光源、美國布魯克海文國家實驗室等單位研究者合作完成。  電解水技術被認為是存儲太陽

    新技術提升光催化完全分解水制氫效率

      中科院大連化學物理研究所催化基礎國家重點實驗室李燦院士、李政博士后和李仁貴研究員等,在納米顆粒光催化完全分解水制氫的逆反應(氫氣和氧氣復合生成水的反應)研究方面取得新進展。團隊確認了光催化完全分解水逆反應發生于低配位活性位點,并利用原子層沉積技術精準定點修飾抑制逆反應,從而顯著提升了光催化完全分

    南開發現可見光分解水催化材料設計規律

      日前,南開大學周震教授及團隊計算發現可見光分解水催化材料設計規律,同時在利用可見光分解水的催化材料研發方面取得突破性進展。此項研究對于利用太陽能分解水產生效能,應對能源危機和環境污染問題具有重要應用前景。  光解水指在陽光的照射下將水分解為氫氣和氧氣,是一種利用太陽能的有效方法。其中,光解水催化

    自來水余氯致癌?大部分余氯加熱會分解

       最近,網上流傳稱"自來水余氯(漂白粉)加熱后會產生致癌物質",傳言讓人們再次對自來水產生疑慮。    昨天,記者就此核實時,專家指出自來水中的余氯含量很微量,不會給人體帶來危害,也沒有此方面直接的流行病學證據。    傳言:喝燒開自來水可致癌    近日,一篇題為《自來水余氯(漂白粉

    人工樹葉:光合作用分解水獲得安全燃料

      據國外媒體報道,受到樹葉里發生的一個化學變化的啟發,加州理工學院的科學家們開發出一種新的導電薄膜。有了這張膜,利用陽光將水分解成氫燃料中出現的問題將迎刃而解。  諸如硅這類的半導體在導電的過程中很容易氧化生銹,加入氧化鎳薄膜能夠防止生銹,同時能促進陽光的分解作用,獲得更多的像

    研制出新型堿性水還原電催化劑

      中國科學技術大學教授俞書宏研究團隊通過磷摻雜手段精準調控過渡金屬硫族化合物二硒化鈷的相變,成功實現其從穩定的立方相到亞穩態正交相的相轉變,研制出在堿性介質中具有類鉑析氫性能的高效水還原電催化劑,為從堿性水中大規模制氫提供了廉價高效的催化電極材料。這項成果日前發表在《自然—通訊》上。  研究人員發

    印度開發出性能優越成本低廉的水分解催化劑

      據《印度時報》近日消息,印度科學研究所(IISc)研究人員開發出一種低成本催化劑,可加速水分解,產生氫氣。這是邁向大規模制氫的重要一步。相關研究成果3月27日發表在德國《應用化學》(Angewandte Chemie)雜志上。  利用電分解水是被廣泛采用的制氫方法,其中析氧反應過程非常緩慢,限制

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频