基本方案 實驗材料 基因 試劑、試劑盒 轉錄緩沖液 DTT RNA酶抑制劑 CTP ATP GTP S-UTP 乙酸銨 乙酸銨 乙醇 儀器、耗材 水浴鍋 離心機 培養箱 烘箱 ......閱讀全文
分子雜交技術 互補的核苷酸序列通過Walson-Crick 堿基配對形成穩定的雜合雙鏈分子DNA 分子的過程稱為雜交。雜交過程是高度特異性的,可以根據所使用的探針已知序列進行特異性的靶序列檢測。雜交的雙方是所使用探針和要檢測的核酸。該檢測對象可以是克隆化的基因組DNA,也可以是細胞總DN
互補的核苷酸序列通過Walson-Crick堿基配對形成穩定的雜合雙鏈分子DNA分子的過程稱為雜交。雜交過程是高度特異性的,可以根據所使用的探針已知序列進行特異性的靶序列檢測。 雜交的雙方是所使用探針和要檢測的核酸。該檢測對象可以是克隆化的基因組DNA,也可以是細胞總DNA或總RNA。根據使用的方
近日,記者從浙江大學獲悉,該校核醫學與分子影像研究所教授張宏團隊,成功研制國內首套具有自主知識產權的PET分子影像探針微流控模塊化集成合成系統。這項分子影像探針合成研究成果,不僅極大拓展個體化、精準醫療的PET臨床應用,還可為相關新藥研發發揮重要支撐作用,對于我國搶占該領域的科學研究制高點具有
一、雜交通過堿基對之間非共價鍵(主要是氫鍵)的形成即出現穩定的雙鏈區,這是核酸分子雜交的基礎。雜交分子的形成并不要求兩條單鏈的堿基順序完全互補,所以不同來源的核酸單鏈只要彼此之間有一定程度的互補順序(即某種程度的同源性)就可以形成雜交雙鏈。分子雜交可在DNA與DNA、RNA與RNA或RNA與DNA的
一、概述 前面已經介紹了核酸分子單鏈之間有互補的堿基順序,通過堿基對之間非共價鍵(主要是氫鍵)的形成即出現穩定的雙鏈區,這是核酸分子雜交的基礎。雜交分子的形成并不要求兩條單鏈的堿基順序完全互補,所以不同來源的核酸單鏈只要彼此之間有一定程度的互補順序(即某種程度的同源性)就可以形成雜交雙鏈。分子雜交
一、概述 前面已經介紹了核酸分子單鏈之間有互補的堿基順序,通過堿基對之間非共價鍵(主要是氫鍵)的形成即出現穩定的雙鏈區,這是核酸分子雜交的基礎。雜交分子的形成并不要求兩條單鏈的堿基順序完全互補,所以不同來源的核酸單鏈只要彼此之間有一定程度的互補順序(即某種程度的同源性)就可以形成雜交雙鏈。分子雜交
這是最早用于性病診斷的重組DNA技術。基本原理是具有一定同源性的兩條核酸單鏈在一定條件下(適宜的溫度及離子強度等)可按堿基互補原則形成雙鏈,此雜交過程是高度特異的。雜交的雙方是待測核酸及探針。待測核酸序列為性病病原體基因組或質粒DNA。探針以放射核素或非放射性核素標記,以利于雜交信號的檢測。 所謂
目前已有多種方法可以將寡核苷酸或短肽固定到固相支持物上。這些方法總體上有兩種,即原位合成( in situ synthesis )與合成點樣兩種。支持物有多種如玻璃片、硅片、聚丙烯膜、硝酸纖維素膜、尼龍膜等,但需經特殊處理。作原位合成的支持物在聚合反應前要先使其表面衍生出羥基或氨基(視所要固定基因芯
分子雜交技術 互補的核苷酸序列通過Walson-Crick堿基配對形成穩定的雜合雙鏈分子DNA分子的過程稱為雜交。雜交過程是高度特異性的,可以根據所使用的探針已知序列進行特異性的靶序列檢測。 雜交的雙方是所使用探針和要檢測的核酸。該檢測對象可以是克隆化的基因組DNA,也可以是細胞總D
所有的生物芯片技術都包含四個基本要點:芯片的制作、雜交或反應、測定或掃描、數據處理。生物芯片的技術核心是芯片的制備及反應信號的檢測。 1、芯片制備技術 目前制備芯片的方法基本上可分為兩大類:一類是原位合成(in situ Synthesis);一類是合成后交聯(post-synthesis at
表達譜基因芯片可應用于:(1)疾病診斷;(2)新藥開發;(3)環境保護。實驗方法原理按照預定位置固定在固相載體上很小面積內的千萬個核酸分子所組成的微點陣陣列。在一定條件下,載體上的核酸分子可以與來自樣品的序列互補的核酸片段雜交。如果把樣品中的核酸片段進行標記,在專用的芯片閱讀儀上就可以檢測到雜交信號
基因芯片 技術的誕生為生物技術工作人員打開了一道科研的便利之門,曾被評為1998年年度十大科技進展之一。本文對基因芯片的實驗原理、技術基礎、分類、用途、操作主要環節等內容做詳細的介紹。 1.基本原理和技術基礎 基因芯片以DNA雜交 為基本原理,基于A和T、G和C的
原位雜交技術應用于染色體、細胞和組織切片等樣品中進行核酸特異性檢測,與免疫組化技術的結合應用,能將DNA、mRNA和蛋白水平上的基因活性與樣品的顯微拓撲信息結合起來。1969年Pardue和Gall將放射性標記的探針直接應用于純化核酸的雜交,此后得益于分子克隆技術的發展,及不同探針標記系統和檢測系統
原位雜交技術應用于染色體、細胞和組織切片等樣品中進行核酸特異性檢測,與免疫組化技術的結合應用,能將DNA、mRNA和蛋白水平上的基因活性與樣品的顯微拓撲信息結合起來。1969年Pardue和Gall將放射性標記的探針直接應用于純化核酸的雜交,此后得益于分子克隆技術的發展,及不同探針標記系統和檢測系統
在RNA的雜交檢測實驗中,應用標記的RNA 探針將獲得高靈敏度的雜交檢測結果,與DNA 探針相比,檢測靈敏度提高10-100倍。因為對于不同的雜交體類型來說,RNA-RNA雜交體的結合強度高于RNA-DNA和DNA-DNA雜交體。對于通過Northern blots檢測低濃度mRNA,以及原
劉向國 謝國明 (重慶醫科大 重慶市 400016)摘 要 熒光定量PCR儀技術是一種新的核酸定量技術,該技木在PCR儀反應系統中引人了熒光標記探針,具有可實時監測,高靈敏性,高特異性和高精確性的特點,極大地克服了原有PCR儀技術的不足,擴大了PCR儀的應用范圍。關鍵詞 定量pcr;熒光;基因Flu
——訪伯科創始人郭誠博士 日前一則“打破國外壟斷!伯科生物推出自主知識產權的生物液相芯片雜交捕獲與探針原位合成技術”引起了業界廣泛關注,細細閱讀后,我好奇地開始探究“伯科”了。伯科創始人是誰?這一探針合成技術優勢在哪里?能為中國精準醫療帶來什么變化? ……全球有機化學殿堂—美國哥倫比亞大學Hav
氟硼熒類陰離子探針的實驗教學應用研究引言隨著超分子化學的發展,分子識別在合成化學、生命科學、信息科學以及材料科學等領域中起著越來越重要的作用。分子識別是指分子之間通過非共價鍵結合而形成特定功能體的過程。為了使分子識別過程所包含的信息簡單有效的向外界傳遞,可通過巧妙設計的具有分子器件性質的光化學傳感分
熒光定量PCR實驗指南一、基本步驟:1、目的基因(DNA和mRNA)的查找和比對;2、引物、探針的設計;3、引物探針的合成;4、反應體系的配制;5、反應條件的設定;6、反應體系和條件的優化;7、熒光曲線和數據分析;8、標準品的制備;二、技術關鍵:1、 目的基因(DNA和mRNA)的查找和比
1 概述 熒光定量多聚酶鏈式反應是一種新的核酸定量技術。該技術將熒光能量傳遞技術(fluorescence resonance energy transfer,FRET)應用于常規多聚酶鏈式反應(poly
細胞因子(cytokine)是由細胞分泌的具有生物活性的小分子蛋白物質的統稱。在免疫應答過程中,細胞因子在免疫調節、炎癥應答、腫瘤轉移等生理和病理過程中起重要作用。細胞因子的檢測不僅是基礎免疫研究的有較手段,同時在臨床疾病診斷、病程觀察、療效判斷及細胞因子治療監測方面具有重要價值。但是,由于細胞因子
細胞因子(cytokine)是由細胞分泌的具有生物活性的小分子蛋白物質的統稱。在免疫應答過程中,細胞因子在免疫調節、炎癥應答、腫瘤轉移等生理和病理過程中起重要作用。細胞因子的檢測不僅是基礎免疫研究的有較手段,同時在臨床疾病診斷、病程觀察、療效判斷及細胞因子治療監測方面具有重要價值。但是,由于細胞因子
細胞因子(cytokine)是由細胞分泌的具有生物活性的小分子蛋白物質的統稱。在免疫應答過程中,細胞因子在免疫調節、炎癥應答、腫瘤轉移等生理和病理過程中起重要作用。細胞因子的檢測不僅是基礎免疫研究的有較手段,同時在臨床疾病診斷、病程觀察、療效判斷及細胞因子治療監測方面具有重要價值。但是,由于細胞因子
四、核酸探針的標記和檢測 分子雜交是核酸鏈間堿基配對規則的一種結合方式,是核酸的重要理化特性。利用分子雜交這一特性來對特定核酸序列進行檢測,必須將雜交鏈中的一條用某種可以檢測的分子進行標記,這條鏈就稱為核酸探針。因此,核酸探針的制備是分子雜交技術的關鍵。最早采用的也是目前最常用的核酸探針標記方法是
四、核酸探針的標記和檢測 分子雜交是核酸鏈間堿基配對規則的一種結合方式,是核酸的重要理化特性。利用分子雜交這一特性來對特定核酸序列進行檢測,必須將雜交鏈中的一條用某種可以檢測的分子進行標記,這條鏈就稱為核酸探針。因此,核酸探針的制備是分子雜交技術的關鍵。最早采用的也是目前最常用的核酸探針標記方法是
相關專題制備RNA探針在RNA的雜交檢測實驗中,應用標記的RNA 探針將獲得高靈敏度的雜交檢測結果,與DNA 探針相比,檢測靈敏度提高10-100倍。因為對于不同的雜交體類型來說,RNA-RNA雜交體的結合強度高于RNA-DNA和DNA-DNA雜交體。對于通過Northern blots檢
隨著DNA合成技術的發展,特別是自動化合成技術的引入,人們能簡便、快速、高效地合成其感興趣的DNA片段。目前,DNA合成技術已成為分子生物學研究必不可少的手段,并且已在基因工程、臨床診斷和治療、法醫學等各個領域中日益發揮重要的作用。 1. DNA合成在基因工程和分子生物學研究中的應用
隨著DNA合成技術的發展,特別是自動化合成技術的引入,人們能簡便、快速、高效地合成其感興趣的DNA片段。目前,DNA合成技術已成為分子生物學研究必不可少的手段,并且已在基因工程、臨床診斷和治療、法醫學等各個領域中日益發揮重要的作用。 1. DNA合成在基因工程和分子生物學研究中的應用
一、目的本實驗的目的是學會原位雜交的使用方法。了解各種原位雜交的基本原理和優缺點。二、原理原位雜交組化(簡稱原位雜交,in situ hybridization histochemistry;ISHH)屬于分子雜交的一種,是一種應用標記探針與組織細胞中的待測核酸雜交,再應用標記物相關的
一、目的 本實驗的目的是學會原位雜交的使用方法。了解各種原位雜交的基本原理和優缺點。 二、原理 原位雜交組化(簡稱原位雜交,in situ hybridization histochemistry;ISHH)屬于分子雜交的一種,是一種應用標記探針與組織細胞中的待測核酸雜交,再應用標記物相關