<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • Antpedia LOGO WIKI資訊

    近紅外量子點用于敗血癥小鼠腦血栓在體成像

    近紅外成像可用于小鼠在體深層組織成像,包括淋巴結、腫瘤以及腦血管等。第二近紅外窗口(1000-1400nm)熒光材料與第一近紅外窗口(750-1000nm)材料比較,血液與組織的吸收及散射小,對活體組織具有更深的穿透能力,成像時呈現更高的信噪比。雖然單壁碳納米管、稀土材料、硫化銀量子點等均在第二近紅外窗口發射熒光,但是量子產率低。日本理化研究所Takashi Jin課題組,制備了硫化鉛量子點,量子產率明顯提高,可于785nm激發獲得1100nm發射光,其熒光強度比硫化銀量子點強十倍;透射電鏡顯示直徑小于10nm,在水溶液中非常穩定。Yukio Imamura等將硫化鉛量子點(QD1100)經尾靜脈注射入小鼠體內,發現小鼠腦部近紅外熒光信號明顯,清晰顯示腦部血管結構(圖1)。對分離的腦組織進行Z軸分層掃描,確定QD1100對腦血管成像的最大深度是1.6mm。接下來,研究者以LPS腹腔注射誘發腦部血管的血栓形成,18h后......閱讀全文

    蘇州納米所硫化銀近紅外量子點活體成像研究取得新進展

      生物醫學影像技術在臨床疾病診斷、治療及預后評估中作用日益顯著,近紅外熒光成像技術因其圖像采集時間短、檢測靈敏度高、綠色和經濟等特點在生物醫學研究領域得到了越來越多的關注。其中,近紅外二區(1000nm-1400nm)熒光對生物組織穿透能力強,成像信噪比高,故該區域熒光成像技術在生物活體成像領域已

    近紅外量子點生物探針用于腫瘤靶向成像和腫瘤切除

    早期檢測和隨后的手術完全切除是治療癌癥最有效的方法 , 然 而檢測靈敏度低和不能完全確定腫瘤邊緣部位是治療時面臨的兩個挑戰性的問題,基于納米顆粒的影像引導手術治療已被證明是腫瘤靶向成像和隨后的減瘤手術的有 效方法,近紅外熒光探針,如近紅外量子點具有深層組織滲透性和較高的靈敏度可用于腫瘤檢測。本研究中

    中國科學技術大學發表10篇CNS,全球學術排名表現出色

    Science:中國科學技術大學在量子力學再取新突破  實現對量子系統的調控是人類認識并利用微觀世界規律的必然訴求,也是諸多前沿科學領域的核心要素。自旋作為一種重要的量子調控研究體系,在世界各國的量子計劃中均被列為重點研究對象。開展單自旋量子調控研究有助于人們在更深層次上認識量子物理的基礎科學問題,

    長春光機所研制出具有高效近紅外吸收/發射的碳納米點

      近日,中國科學院長春光學精密機械與物理研究所研究員曲松楠課題組突破了碳基納米點在近紅外波段發光效率低的難題,首次研制出具有高效近紅外吸收/發光特性的碳納米點,實現了基于碳納米點的活體近紅外熒光成像,并在近紅外-Ⅱ區(1400nm)激發下同時實現了雙光子近紅外發射和三光子紅光發射,在基于碳基納米點

    JACS/Angew/AM 11篇,趙東元、彭笑剛、樓雄文、張強等成果速遞

      1. JACS:用于檢測癌細胞和腫瘤中溶酶體甲醛含量的雙“鎖鑰”釕復合探針  生物醫學研究表明,過量的甲醛生成是造成組織癌變、癌癥進展和轉移的關鍵因素之一。響應性分子探針可以檢測活細胞和腫瘤中溶酶體內的甲醛,并對藥物引發的甲醛清除過程進行監測,這也有助于未來的癌癥診斷和治療監測。  大連理工大學

    如何選擇小動物活體熒光成像系統?

      小動物活體熒光成像技術在國內外得到越來越的普及應用,越來越多的科研人員希望能通過該技術來長時間追蹤觀察活體動物體內腫瘤細胞的生長以及對藥物治療的反應,希望能觀察到熒光標記的多肽、抗體、小分子藥物在體內的分布和代謝情況。     與傳統技術相比,活體

    活體動物體內生物發光和熒光成像技術基礎原理與應用四

    二、活體動物熒光成像技術 (一)技術原理1.標記原理活體熒光成像技術主要有三種標記方法。(1)熒光蛋白標記:熒光蛋白適用于標記細胞、病毒、基因等,通常使用的是GFP、EGFP、RFP(DsRed)等;(2)熒光染料標記:熒光染料標記和體外標記方法相同,常用的有Cy3、Cy5、Cy5.5及C

    光機所利用近紅外激光實現靶向腫瘤治療

      近期,中國科學院上海光學精密機械研究所強場激光物理國家重點實驗室研究員劉軍課題組取得科研新進展,實驗中采用黑磷量子點復合材料作為雙模成像引導用試劑,在近紅外激光的誘導下,可對葉酸受體(FR)過度表達的腫瘤實現靶向可視化協同殺傷治療。相關成果發表于Nanophotonics(DOI: https:

    納米生物技術可監控病毒感染過程

       病毒性疾病嚴重威脅著人類健康,深刻認識和理解病毒感染過程及致病機制是病毒性疾病防治的重要基礎。研究病毒感染過程通常基于熒光標記技術,但是常用的熒光蛋白及傳統熒光染料往往容易發生光漂白,難以長時間動態跟蹤整個感染過程。  在“納米研究”國家重大科學研究計劃的支持下,圍繞“量子點標記技術研究病毒侵

    腫瘤免疫治療成像技術的研究進展

      1. 腫瘤免疫治療  腫瘤免疫治療是指通過免疫系統的被動或主動免疫來控制和殺滅腫瘤的一種治療方法。與傳統醫療手段在物理和化學層面上殺滅腫瘤細胞不同,腫瘤免疫療法通過增強機體免疫系統功能來控制和殺滅腫瘤,具有不良反應小、特異性強等優點。根據治療原理的不同,免疫療法主要可分為非特異性免疫刺激、腫瘤疫

    腫瘤免疫治療成像技術的研究進展

      1. 腫瘤免疫治療  腫瘤免疫治療是指通過免疫系統的被動或主動免疫來控制和殺滅腫瘤的一種治療方法。與傳統醫療手段在物理和化學層面上殺滅腫瘤細胞不同,腫瘤免疫療法通過增強機體免疫系統功能來控制和殺滅腫瘤,具有不良反應小、特異性強等優點。根據治療原理的不同,免疫療法主要可分為非特異性免疫刺激、腫瘤疫

    基于量子點的在體、實時、多色淋巴結成像

    量子點(Quantum dots,QDs)的熒光亮度非常高,同時發射光譜狹窄而對稱,半峰寬小于30nm,可實現單一波長的多色激發,而且多個發射光之間的相互干擾小,因而在可見光范圍內能夠實現五種不同顏色的同時成像觀察。NIH研究人員Kobayashi H等,將五個不同發射波長的量子點(ca

    214項!國家基金委公布一項國際合作項目初審結果

      10月27日,國家自然科學基金委員會公布2021年度國家自然科學基金委員會與英國皇家學會合作交流項目初審結果。序號科學部編號項目名稱中方申請人中方依托單位11201101460基于展向扭曲結構的流動與噪聲控制研究劉宇南方科技大學21201101470面向旋轉環境下無線傳感器自供電的能量俘獲新機理

    蘇州納米所等在硫化銀近紅外量子點活體成像研究中獲進展

      隨著生物醫學影像技術的不斷發展,近紅外熒光成像技術在生物醫學研究領域得到了越來越多的關注和應用。其中,近紅外二區(1000 nm-1400 nm)熒光對生物組織穿透能力強,成像信噪比高,該區域熒光成像技術在生物活體成像領域已展現出巨大潛力。量子點(Quantum dots, QDs)作為

    第三屆全國樣品制備會分會報告繽紛呈現

      分析測試百科網訊 2017年8月24日,第三屆全國樣品制備學術報告會在昆明召開(相關報道:第三屆全國樣品制備會在春城開幕 樣品處理再現新技術)。除了精彩的大會報告(相關報道:第三屆全國樣品制備會大會報告一 新方法層出不窮),大會還安排了多場分會報告,來自全國各地的高校、研究院和企業等紛紛帶來新技

    2019年中國學者86篇Cell,Nature及Science文章匯總

      2019年上半年很快就結束了,iNature盤點了中國學者在Cell,Nature及Science發表的成果,我們發現總共有86篇(截至2019年6月24日),具體介紹如下:  4-6月發表的文章  【1】2019年6月21日,西北工業大學王文,中科院昆明動物研究所/BGI 張國捷及丹麥哥本哈根

    首屆快檢技術及儀器學術討論會報告精彩薈萃

      2014年10月16~17日,中國儀器儀表學會分析儀器分會快速檢測技術及儀器專業委員會第一屆學術研討會在浙江嘉興隆重召開,本次會議由中國儀器儀表學會分析儀器分會及快速檢測技術及儀器專業委員會主辦,首都科技條件平臺檢測與認證領域中心、浙江

    腦腫瘤近紅外二區聚集誘導發光探針研究獲進展

      近日,中國科學院深圳先進技術研究院勞特伯醫學成像中心分子影像團隊與新加坡國立大學教授劉斌合作,構建了近紅外二區(1000-1700 nm)聚集誘導發光(AIE)分子,通過納米共沉淀技術制備了RGD多肽靶向的AIE探針,實現了腦膠質瘤的近紅外二區熒光/近紅外一區光聲雙模態分子成像。研究成果Brig

    研究揭示基于強磁場調控石墨烯量子點的光學性質

      石墨烯量子點(GQDs)是一種小尺寸的二維納米材料。近年來,因其穩定性、生物相容性、熒光可調性以及易被腎臟清除等特點,在癌癥診療一體化中具有極大的應用,在生物醫學領域引起了極大關注。現有應用于光熱治療的GQDs的光學吸收主要集中于近紅外一區。然而,皮膚和組織的吸收以及散射使得近紅外一區的激光穿透

    蘇州納米所硫化銀近紅外量子點細胞成像研究進展

      自1998年Alivisatos和聶書明等首次提出將量子點(Quantum dots, QDs)作為熒光標簽應用到生物醫學研究中,量子點作為一種重要的生物標記與成像納米光學探針,在分子檢測、細胞標記和活體成像中發揮著越來越重要的作用。然而,由于可見熒光量子點對活體組織的穿透能力較

    基于近紅外稀土納米晶/量子點雙激發解碼實現精準探溫

      近紅外熒光比率型溫度傳感具有較大的組織穿透深度、較低的背景熒光干擾及無創探測等優點,因而在生物醫學領域具有廣闊應用前景。為了避免熒光探測信號相互串擾,傳統的近紅外熒光比率型溫度探測模式采用兩個無交疊的熒光發射強度之比作為溫敏參數。然而,光在生物組織中的衰減系數具有波長依賴性,因而兩個無交疊的熒光

    深圳先進院研發出新一代近紅外量子點二維編碼技術

      編碼技術在商品流通、圖書管理、郵政管理、銀行系統等許多領域都有廣泛應用,同時也為基因組學、蛋白質組學、代謝組學等研究提供了機遇。大數據時代的到來對光學編碼的數據量提出了更高要求,但傳統光學編碼主要利用顏色進行編碼,由于熒光發光的顏色相互之間重疊嚴重,造成可用的編碼量非常少。如果能從其他維度進行編

    顯微成像小課堂丨寬場熒光顯微鏡

      在活體細胞成像應用中,寬場熒光顯微鏡有助于觀察放置于顯微鏡載物臺上特定的環境室中生長的粘附細胞的動力學特性。在最基本的配置中,配備有EPI熒光照明的標準倒置組織培養顯微鏡與區域陣列檢測器系統(通常是CCD攝像機)、合適的熒光濾色片和光閘系統耦合,以限制細胞過度暴露于有害的激發光。基本熒光顯微鏡依

    解讀2015年度中國科學十大進展

      實現多自由度量子隱形傳態   量子隱形傳態在概念上非常類似于科幻小說中的“星際旅行”,可以利用量子糾纏把量子態傳輸到遙遠地點,而無需傳輸載體本身。中國科學技術大學潘建偉、陸朝陽等組成的研究小組在國際上首次成功實現多自由度量子體系的隱形傳態,成果以封面標題的形式發表于《自然》雜志。這是自1997年

    中科院科研進展2017

      Ce基非晶合金的形成機理研究進展  非晶形成的機理以及熱力學、動力學和結構對非晶形成能力的影響是材料科學的重要問題之一,目前也是非晶材料和物理領域研究的重點方向之一。物理所汪衛華小組與美國North Carolina大學Wu Yue研究小組合作,采用核磁共振NMR 27Al 方法系統研究了微量元

    活體成像——讓腫瘤細胞無處遁形

    在科普今天的知識前,不禁讓小編回憶起大學校園的美好時光,那個時候小編還是個走在綠樹蔭下的青澀少年啊,在一次參加關于腫瘤免疫學的學術會議上,看到了類似下面這種圖,我就在想,這小鼠是修煉了什么內家功法,被打通任督二脈了?那五顏六色的東東是什么?經過向老師還有身邊的小伙伴們請教才知道,這是利用活體成像技術

    干貨】 活體成像-讓腫瘤細胞無處遁形

       在科普今天的知識前,不禁讓小編回憶起大學校園的美好時光,那個時候小編還是個走在綠樹蔭下的青澀少年啊,在一次參加關于腫瘤免疫學的學術會議上,看到了類似下面這種圖,我就在想,這小鼠是修煉了什么內家功法,被打通任督二脈了?那五顏六色的東東是什么?經過向老師還有身邊的小伙伴們請教才知道,這是利用活體成

    聯合應用量子點及熒光發射掃描顯微鏡技術的腫瘤轉移...

    聯合應用量子點及熒光發射掃描顯微鏡技術的腫瘤轉移示蹤腫瘤轉移是實現腫瘤有效治療的一大障礙,而目前有關腫瘤轉移(特別是侵潤Extravasation)過程的認識非常有限。主要原因是參與腫瘤轉移的多細胞、多分子之間的相互作用復雜,腫瘤轉移過程難以實現在體示蹤。隨著新技術的發展,熒光顯微鏡成像可實現對細胞

    第七屆食品安全技術論壇分會:食品安全快速檢測技術

      2014年3月19~20日,由太平洋國際展覽(北京)有限公司主辦的第七屆中國北京國際食品安全技術論壇在北京國家會議中心隆重召開,來自高等院校、科研機構、企事業單位的國內外專家、知名學者參加了此次盛會。除了大會報告之外,本次食品安全技術論壇還進行了12個專題研討會,分

    《麻省理工科技評論》35位中國科技青年入選英雄榜!

      《麻省理工科技評論》于 2016 年正式落地中國,次年,“35 歲以下科技創新 35 人” (Innovators Under 35)中國榜單正式發布!四年成長、四屆榜單,我們持續關注和發掘中國科技發展中不斷崛起的新興力量。從實驗室里最新的技術研發成果,到各前沿領域的科技創業者們所取得的里程碑式

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频