二代測序技術助龍膽族葉綠體基因組進化和系統學獲進展
隨著二代測序技術的發展,植物葉綠體基因組序列已普遍應用于重建植物“生命之樹”研究中。大多數植物葉綠體基因組呈環狀四分體結構,包含約80個蛋白編碼基因。葉綠體基因組由于缺乏重組,而常被認為是連鎖的單一基因座;然而,越來越多的研究表明,葉綠體基因組中不同區域以及不同編碼基因具有不同的核酸替代速率,經受不同的自然選擇壓力。目前對葉綠體單基因或不同功能組基因的進化研究較少。此外,傳統基于葉綠體基因組的系統基因組學研究,通常將葉綠體基因組直接串聯起來進行系統樹構建,因此,單基因遺傳變異導致的系統發育不一致性常被忽略。 龍膽族包含龍膽亞族和獐牙菜亞族,大多數生長在青藏高原高山草甸及流石灘,包含許多高山花卉和藥用植物,如龍膽、獐牙菜、秦艽、扁蕾等,是理解高山植物演化和適應性的良好類群。基于DNA片段的系統學研究往往不能提供較好的分辨率,使得龍膽族內系統關系未能得到揭示。 中國科學院武漢植物園系統與進化學科組采集龍膽族10個屬的樣品進行......閱讀全文
二代測序技術助龍膽族葉綠體基因組進化和系統學獲進展
隨著二代測序技術的發展,植物葉綠體基因組序列已普遍應用于重建植物“生命之樹”研究中。大多數植物葉綠體基因組呈環狀四分體結構,包含約80個蛋白編碼基因。葉綠體基因組由于缺乏重組,而常被認為是連鎖的單一基因座;然而,越來越多的研究表明,葉綠體基因組中不同區域以及不同編碼基因具有不同的核酸替代速率,經
葉綠體基因組
葉綠體是地球上綠色植物把光能轉化為化學能的重要細胞器,葉綠體中進行的光合作用是嚴格地受到遺傳控制的。早在20世紀初,人們就已知葉綠體的某些性狀是呈非孟德爾式遺傳的,但直到60年代才發現了葉綠體DNA(chloroplast DNA,ctDNA)。葉綠體基因組是一個裸露的環狀雙鏈DNA分子,其大小在1
葉綠體基因組的概念
采用高鹽、低pH值法提取雷蒙德氏棉葉綠體DNA;通過物理剪切法獲得隨機斷裂的DNA片段;剪切片段末端、補平修飾后與pCC1FOS載體連接;用噬菌體包裝蛋白包裝重組DNA,侵染大腸桿菌EPI300,構建了雷蒙德氏棉葉綠體基因組文庫。對于葉綠體DNA剪切,以1 mL注射器中等速度吸打18次為最佳參數。
葉綠體基因組的特點介紹
葉綠體基因組在很多方面與線粒體基因組的結構是相似的。葉綠體DNA(cpDNA)是雙鏈環狀,缺乏組蛋白和超螺旋。cpDNA中的GC含量與核DNA及mtDNA有 很大的不同。因此可用CsCl密度梯度離心來分離cpDNA。 每個葉綠體中cpDNA的拷貝數隨著物種的不同而不同。但都是多拷貝的。這些拷貝
葉綠體基因組--cpDNA的相關介紹
葉綠體基因組在很多方面與線粒體基因組的結構是相似的。葉綠體DNA(cpDNA)是雙鏈環狀,缺乏組蛋白和超螺旋。cpDNA中的GC含量與核DNA及mtDNA有 很大的不同。因此可用CsCl密度梯度離心來分離cpDNA。 每個葉綠體中cpDNA的拷貝數隨著物種的不同而不同。但都是多拷貝的。這些拷貝
細胞化學基礎葉綠體基因組--cpDNA
葉綠體基因組在很多方面與線粒體基因組的結構是相似的。葉綠體DNA(cpDNA)是雙鏈環狀,缺乏組蛋白和超螺旋。cpDNA中的GC含量與核DNA及mtDNA有 很大的不同。因此可用CsCl密度梯度離心來分離cpDNA。每個葉綠體中cpDNA的拷貝數隨著物種的不同而不同。但都是多拷貝的。這些拷貝位于類核
Nature:藻類基因組解讀葉綠體秘史
我們初學生物時接觸得最早的就是光合作用,光合作用利用二氧化碳、水和太陽能合成有機物。世界上最重要的光合作用真核生物(植物)多半并不是自己演化出光合作用能力的,它們的葉綠體是從其他生物中“拿來”的。 這些葉綠體來源于真核宿主吞食的光合細菌,這一過程被稱為初級內共生。隨后,紅藻和綠藻中的葉綠體
藍藻和葉綠體基因組的比較研究
原核的藍藻和真核植物(包括其他藻類)中的葉綠體,都同樣進行放氧的光合作用,這為人類和整個生物界提供了賴以生存的食物、氧氣、能源和原料。對葉綠體和藍藻的細胞結構和分子生物學特性作分析,證明真核生物的葉綠體可能起源于藍藻祖先的內共生。這使藍藻在20多年來已成為光合作用研究的模式生物。 藍藻基因組的
煙草和水稻葉綠體cpDNA基因組成特點
1.基因組由兩個反向重復序列(IR)和一個短單拷貝序列(short single copy sequence, SSC)及一個長單拷貝序列(long single copy sequence, LSC)組成;2.IRA和IRB長各10-24Kb,編碼相同,方向相反。3.cpDNA啟動子和原核生物的相
藍藻和葉綠體基因組的比較研究
原核的藍藻和真核植物(包括其他藻類)中的葉綠體,都同樣進行放氧的光合作用,這為人類和整個生物界提供了賴以生存的食物、氧氣、能源和原料。對葉綠體和藍藻的細胞結構和分子生物學特性作分析,證明真核生物的葉綠體可能起源于藍藻祖先的內共生。這使藍藻在20多年來已成為光合作用研究的模式生物。藍藻基因組的作圖和測
藍藻和葉綠體基因組的比較研究
藍藻和葉綠體基因組的比較研究原核的藍藻和真核植物(包括其他藻類)中的葉綠體,都同樣進行放氧的光合作用,這為人類和整個生物界提供了賴以生存的食物、氧氣、能源和原料。對葉綠體和藍藻的細胞結構和分子生物學特性作分析,證明真核生物的葉綠體可能起源于藍藻祖先的內共生。這使藍藻在20多年來已成為光合作用研究的模
藍藻和葉綠體基因組的比較研究
原核的藍藻和真核植物(包括其他藻類)中的葉綠體,都同樣進行放氧的光合作用,這為人類和整個生物界提供了賴以生存的食物、氧氣、能源和原料。對葉綠體和藍藻的細胞結構和分子生物學特性作分析,證明真核生物的葉綠體可能起源于藍藻祖先的內共生。這使藍藻在20多年來已成為光合作用研究的模式生物。 藍藻基因組的
藍藻和葉綠體基因組的比較研究
原核的藍藻和真核植物(包括其他藻類)中的葉綠體,都同樣進行放氧的光合作用,這為人類和整個生物界提供了賴以生存的食物、氧氣、能源和原料。對葉綠體和藍藻的細胞結構和分子生物學特性作分析,證明真核生物的葉綠體可能起源于藍藻祖先的內共生。這使藍藻在20多年來已成為光合作用研究的模式生物。藍藻基因組的作圖和測
關于葉綠體基因組--cpDNA的基本介紹
葉綠體基因組在很多方面與線粒體基因組的結構是相似的。葉綠體DNA(cpDNA)是雙鏈環狀,缺乏組蛋白和超螺旋。cpDNA中的GC含量與核DNA及mtDNA有 很大的不同。因此可用CsCl密度梯度離心來分離cpDNA。 每個葉綠體中cpDNA的拷貝數隨著物種的不同而不同。但都是多拷貝的。這些拷貝
葉綠體基因組--cpDNA的結構功能特點
葉綠體基因組在很多方面與線粒體基因組的結構是相似的。葉綠體DNA(cpDNA)是雙鏈環狀,缺乏組蛋白和超螺旋。cpDNA中的GC含量與核DNA及mtDNA有 很大的不同。因此可用CsCl密度梯度離心來分離cpDNA。每個葉綠體中cpDNA的拷貝數隨著物種的不同而不同。但都是多拷貝的。這些拷貝位于類核
植物葉綠體基因組基因表達調控的研究
葉綠體基因組的特點是具相同或相關功能的基因組成復合操縱子結構。這一特點有利于葉綠體基因的表達與調控,例如rpoB-rpoC-rpoC 2操縱子是由編碼RNA聚合酶各個亞基的基因聚合在一起而形成的,而psbI-psbK-psbD-psbC操縱子則編碼PSⅡ的部分蛋白質。葉綠體基因組基因表達調控方式。轉
中國植物葉綠體基因組研究顛覆學界認知
中國科學家一項歷時五年的研究成果顛覆了學界對植物葉綠體基因組的認知——科學家發現整個葉綠體基因組都是可以轉錄的。該研究成果已于近日發表在了《自然》出版集團的《科學報告》上。 《科學報告》的審稿專家一致認為,“這一成果首次發現了我們從來沒有想象過的現象,顛覆了傳統遺傳學上認為的只有葉綠體編碼基因
植物葉綠體基因組基因表達調控的研究
葉綠體基因組的特點是具相同或相關功能的基因組成復合操縱子結構。這一特點有利于葉綠體基因的表達與調控,例如rpoB-rpoC-rpoC 2操縱子是由編碼RNA聚合酶各個亞基的基因聚合在一起而形成的,而psbI-psbK-psbD-psbC操縱子則編碼PSⅡ的部分蛋白質。葉綠體基因組基因表達調控方式。轉
植物葉綠體基因組基因表達調控的研究
葉綠體基因組的特點是具相同或相關功能的基因組成復合操縱子結構。這一特點有利于葉綠體基因的表達與調控,例如rpoB-rpoC-rpoC 2操縱子是由編碼RNA聚合酶各個亞基的基因聚合在一起而形成的,而psbI-psbK-psbD-psbC操縱子則編碼PSⅡ的部分蛋白質。葉綠體基因組基因表達調控方式
榕屬葉綠體基因組比較研究獲進展
近年來,葉綠體基因組因基因組小、突變率和重組率低的特點,被廣泛用于植物系統發育、分子進化、譜系地理學的研究。榕屬(Ficus)作為桑科的最大屬,且是熱帶雨林的關鍵物種,而其系統發育關系仍需進一步研究。榕屬物種具有多樣的生態型,體現了對不同生境的高度適應性。盡管近年來關于榕屬葉綠體基因組的研究有所
植物葉綠體基因組基因表達調控的研究
葉綠體基因組的特點是具相同或相關功能的基因組成復合操縱子結構。這一特點有利于葉綠體基因的表達與調控,例如rpoB-rpoC-rpoC 2操縱子是由編碼RNA聚合酶各個亞基的基因聚合在一起而形成的,而psbI-psbK-psbD-psbC操縱子則編碼PSⅡ的部分蛋白質。葉綠體基因組基因表達調控方式
葉綠體和線粒體基因組變異檢測獲突破
近日,《公共科學圖書館―綜合》發表了中國農業科學院油料作物研究所博士后曾長立與合作導師伍曉明研究建立的能高通量檢測葉綠體和線粒體基因組遺傳變異的新方法。 據曾長立介紹,葉綠體和線粒體基因組作為植物細胞質基因組,對光合作用、呼吸作用等重要生命過程具有重要意義。 研究葉綠體和線粒體基因組
植物葉綠體基因組基因表達調控的研究
葉綠體基因組的特點是具相同或相關功能的基因組成復合操縱子結構。這一特點有利于葉綠體基因的表達與調控,例如rpoB-rpoC-rpoC 2操縱子是由編碼RNA聚合酶各個亞基的基因聚合在一起而形成的,而psbI-psbK-psbD-psbC操縱子則編碼PSⅡ的部分蛋白質。葉綠體基因組基因表達調控方式。轉
關于葉綠體基因組的基本特點的介紹
葉綠體基因組在很多方面與線粒體基因組的結構是相似的。葉綠體DNA(cpDNA)是雙鏈環狀,缺乏組蛋白和超螺旋。cpDNA中的GC含量與核DNA及mtDNA有 很大的不同。因此可用CsCl密度梯度離心來分離cpDNA。 每個葉綠體中cpDNA的拷貝數隨著物種的不同而不同。但都是多拷貝的。這些拷貝
龍膽的介紹
龍膽(拉丁學名:Gentiana scabra Bunge),龍膽科龍膽屬多年生草本植物。它根黃白色,繩索狀,莖直立,常帶紫褐色。葉對生,卵形或卵狀披針形,邊緣及下面主脈粗糙。其花簇生莖端或葉腋,苞片披針形,與花萼近等長,花萼鐘狀。它生于草甸、灌叢或林緣。龍膽分布于朝鮮、日本,及中國黑龍江、吉林
科學家揭示德保蘇鐵葉綠體基因組特征
廣西大學植物生理生態與進化課題組在蘇鐵植物的基因組學研究方面取得新進展,首次用蘇鐵的葉綠體全基因組重建了蘇鐵植物的系統進化樹,揭示托葉鐵科為非單系起源,該研究成果近日發表在《科學報告》上。 據介紹,研究人員通過對德保蘇鐵展開二代測序,獲得了德保蘇鐵基因組幾百萬條的短片段,用先進的算法進行組裝,
細胞質雄性不育與葉綠體基因組
CMS 與葉綠體的關系還存在很大的爭議。相對于植物線粒體而言,葉綠體基因組較為保守也較小(120~160 kb),因此對它的認識要比對線粒體深入的多。研究發現植物葉綠體一般分為4個區:兩個反向重復區,大單拷貝區和小單拷貝區。已有多種植物葉綠體的物理圖譜被構建。對高粱的 CMS 系及相應保持系的葉綠體
全基因組測序揭示蒙古族遺傳結構
內蒙古民族大學生命科學學院白海花團隊對175名蒙古人進行了全基因組測序,從而揭示了蒙古族的遺傳結構。11月6日,相關成果發表于《自然—遺傳學》。 歷史上,蒙古族的統治疆域曾北至俄羅斯的西伯利亞,南至中國南海,東北至黑龍江,西南至緬甸泰國境內,蒙古族民眾也因此四散各地。不過,對于蒙古族人如何影響其他
全基因組測序揭示蒙古族遺傳結構
內蒙古民族大學生命科學學院白海花團隊對175名蒙古人進行了全基因組測序,從而揭示了蒙古族的遺傳結構。11月6日,相關成果發表于《自然—遺傳學》。 歷史上,蒙古族的統治疆域曾北至俄羅斯的西伯利亞,南至中國南海,東北至黑龍江,西南至緬甸泰國境內,蒙古族民眾也因此四散各地。不過,對于蒙古族人如何影響
星狀龍膽的介紹
星狀龍膽(學名:Gentiana stellulataH. Smith),是龍膽科、龍膽屬一年生草本。星狀龍膽高5-10厘米,莖紫紅色或黃綠色。基生葉大,葉脈3-5條,葉柄寬;莖生葉小,開展,外彎。花多數,單生于小枝頂端。蒴果外露或內藏,矩圓狀匙形,先端圓形,邊緣有翅,基部漸狹。花果期6-9月。