基于ADS平臺改進型Doherty電路設計與仿真(五)
4、改進型Doherty 功率放大器仿真驗證我們選用DXY鼎芯提供的10W LDMOS功率放大管BLF6G21-10G,在ADS上進行仿真,通過對比其工作在CLASS AB狀態下的功率和效率,和采用改進型Doherty結構后的功率和效率進行對比,驗證了方案的可行性。1)單管CLASS AB狀態下仿真圖8、單管CLASS AB仿真原理圖圖9、單管CLASS AB仿真結果由上面的圖8和圖9可見,BLF6G21-10G在CLASS AB狀態下,其P1dB功率為41.3dBm,約12W左右,而其輸出功率為34dBm時,功率附加效率(PAE)為26.6%。2)雙管改進型Doherty電路結構仿真取兩個BLF6G21-10G,在輸入和輸出端通過兩個DXY 鼎芯提供的HC2100A03 3dB混合電橋合路,1個定義為主放大器(載波放大器),工作在CLASSAB狀態,另一個定義為峰值放大器,工作在CLASSC狀態,構成了Doherty結......閱讀全文
基于ADS平臺改進型Doherty電路設計與仿真(五)
4、改進型Doherty 功率放大器仿真驗證我們選用DXY鼎芯提供的10W LDMOS功率放大管BLF6G21-10G,在ADS上進行仿真,通過對比其工作在CLASS AB狀態下的功率和效率,和采用改進型Doherty結構后的功率和效率進行對比,驗證了方案的可行性。1)單管CLASS AB狀態下仿真
基于ADS平臺改進型Doherty電路設計與仿真(三)
3dB電橋的S參數矩陣是(2)[b]表示反射波,[a]表示入射波當我們把隔離口開路時,b4=a4,代入到上式,并消去b4,a4,得到:得到一個3端口網絡,這個3端口網絡的S參數矩陣為(3)和(1)式比較,僅涉及3端口的參數的相位有差異,如果我們把后一電路的3端口前加上90°相移,則這個電路的S參數和
基于ADS平臺改進型Doherty電路設計與仿真(六)
圖11、改進型Doherty仿真結果從圖11的仿真結果看,改進型Doherty電路的峰值功率達到了43.3dBm,輸出功率為37.3dBm時,效率達到了43%,與CLASS AB狀態相比,功率回退同樣6dB情況下,效率提高16.7%。5、結論通過從原理的推導,在理論方面論證了方案的可行性,再通過AD
基于ADS平臺改進型Doherty電路設計與仿真(二)
在實際應用中,在小功率輸入的情況下,Doherty 放大器的增益和單管相比,增益有較大幅度的下降。其原因主要是:由于峰值放大器匹配電路的影響,峰值放大器截止時,其等效阻抗并不滿足理想情況的無窮大。并且由于等效阻抗并不是理想的無窮大,造成載波放大器能量的泄露,降低效率。為了解決Doherty
基于ADS平臺改進型Doherty電路設計與仿真(四)
如果我們把4口走一段微帶再開路,那么會是什么情形呢,我們可以把1、2端口的反射看著從4口反射回1、2口的,4口增加的微帶增加了反射路徑,一段路徑可以移到1、2端口上。于是,下面兩個電路是等效的,可以驗證它們的S參數矩陣是一樣的,如圖6所示。圖6、3dB電橋等效轉換圖就是說我們調整4口反射線的長度就相
基于ADS平臺改進型Doherty電路設計與仿真(一)
摘要:首先理論上推導,再通過Advanced design system( ADS) 平臺仿真驗證,仿真設計一款工作于2. 14 GHz 頻段改進型Doherty功率放大器,與傳統Doherty電路相比,其輸出合路部分采用了3dB混合電橋進行合路,結構簡單,無需調整主放大器和峰值放大器的補償
基于ADS平臺不對稱Doherty功率放大器的仿真設計(一)
為在高線性的前提下提高WCDMA基站系統中功率放大器的效率,仿真設計了一款工作于2.14 GHz頻段不對稱功率驅動的Deherty功率放大器。基于ADS平臺,采用MRF6S21140H LDMOS晶體管,通過優化載波放大器和峰值放大器的柵極偏置電壓改善三階互調失真(IMD3),同時通過調節輸
基于ADS平臺不對稱Doherty功率放大器的仿真設計(二)
分析圖3的不對稱功率驅動的Doherty功率放大器與AB類平衡功率放大器的三階互調失真(IMD3)比較曲線圖可以發現,設計的1:2.3不對稱功率驅動的Doherty功率放大器的線性度較為理想。當輸出功率為43 dBm時,1:2.3不對稱功率驅動的Doherty功率放大器的IMD3為-42.24
無線產品射頻電路設計的科學方法(一)
從20世紀80年代開始,射頻微波電路技術的應用方向逐漸由傳統波導同軸器件轉移到微波平面PCB電路方面,微波平面電路設計一直是一項比較復雜的工作。現在的無線通信產品已經從早期的2G,逐步發展到3G、4G乃至5G。隨著應用頻率的逐步走高,再加上多頻段電路并存與產品小型化要求等,射頻電路的設計越來越難,傳
395MHz-455MHz Doherty放大器一種緊湊型實現方法(二)
通過上述分析,我們可以看出90度混合電橋和傳統的Doherty合成器具有完全相同的電氣性能,對于低頻應用而言,90度混合電橋實現面積更小。Doherty放大器的基本工作原理是有源負載牽引[3]。正如圖1所示,Doherty放大器由載波放大器和峰值放大器組成,Doherty合成器將在載波放大器和峰值放